

Equipment Required

PC or Mac Computer
IXTA, USB cable, Power supply for IXTA
iWire-B3G cable and three EMG lead wires
Disposable snap electrodes
HV stimulator lead wires
Disposable Razor

Start the Software

1. Click on LabScribe
2. Click Settings → Human Nerve → Soleus-HReflex
3. Once the settings file has been loaded, click the Experiment button on the toolbar to open any of the following documents:
 - Appendix
 - Background
 - Labs
 - Setup (opens automatically)

Preparation of the Subject

1. Locate:
 - the soleus muscle just inferior to the belly of the gastrocnemius muscle
 - the popliteal fossa behind the knee joint
 - the anterior thigh just superior to the patella
 - any bony landmark (mid tibia and either malleolus will work)
2. If necessary, shave the areas using warm water and the disposable razor
3. Gently rub away dead skin cells at each location using the abrasive pad
4. Cleanse the area with an alcohol wipe and give approximately 60 seconds of time to dry
5. Apply disposable electrodes (*Figure HN-6-S1*):
 - 2 in line with the soleus muscle fibers approximately so the centers of the electrodes are approximately 2 cm apart
 - 1 in the popliteal fossa
 - 1 just superior to the patella
6. Connect leads accordingly (Figure HN-6-S5):
 - Red and black EMG leads will attach to the two electrodes over the soleus
 - Black stimulator lead will go on the electrode in the popliteal fossa
 - Red stimulator lead will go on the electrode just superior to the patella
 - Green EMG lead will go on the electrode on the bony landmark you’ve chosen

7. You may need to place a small wooden block on top of the electrode in the popliteal fossa and secure it with an elastic bandage. This is recommended, but may not be required in all subjects.

![Figure HN-6-S1: Electrode placement for recording the Hoffman Reflex from the soleus muscle.](image)

The Equipment Setup

1. Attach the iWire-B3G EMG cable to the iWire 1 input on the front of the IXTA.

Note – You must connect the iWire-B3G prior to turning on the IXTA.

2. Go to “Edit” and “Preferences”. Ensure you have the Channel tab selected. Confirm you are recording from 10-10 Khz 12V. Acquisition mode should set to “Chart” and Start mode to “User”. Stop will be timed to 0.120 seconds. Sampling rate will be 2000 samples*sec⁻¹. It is
easiest to view each trial if you set the viewing window to 0.120. Do not 'X' out of the window.

3. Click the stimulator tab. Confirm values align with Figure HN-6-S2 below. Now you may close the window.

![Figure HN-6-S2 – Stimulator Preferences window.](image)

IXTA Stimulator Setup

1. Place the IXTA on the bench near the subject.

 Warning: Before connecting the IXTA stimulating electrodes to the subject, check the Stimulator Control Panel to make sure the amplitude value is set to zero (0).

 Note: Disconnect the subject from the IXTA prior to powering off the device.

 2. Instruct the subject to remove all jewelry before beginning the experiment.

 Warning: Make sure the Amplitude is set to zero.

 3. For any of the HVS labs, the stimulator preferences panel will initially come up showing S1, even if S1 is off - use the menu to select the HVS settings.

 4. Connect the color-coded stimulator lead wires to the High Voltage Current Stimulator. Make
sure you push the safety connector of each lead wire into the appropriate socket as far as possible (Figure HN-6-S4).

5. Connect the 2 stimulating electrodes as stated above.

![IXTA stimulating electrodes](image1)

Figure: The IXTA stimulating electrodes.

![Front panel of the IXTA](image2)

Figure: The front panel of the IXTA with the stimulating electrodes connected correctly.

![IXTA with iWire-B3G electrodes](image3)

Figure: IXTA with the iWire-B3G electrodes and the stimulator cables for the Hoffman Reflex lab.
Exercise 1: To investigate the H and M reflex responses.

Aim: To investigate the H-reflex response and the M-wave response during muscle stimulation.

Approximate Time: 60 minutes

Procedure:

1. Increase the current of the SI-200 to 2 mA (1.0 on the dial or using the IXTA Stimulator Control Panel).
 - Check the Setup file to determine the initial stimulator preferences.
 - When using the IXTA – click the “Apply” button to make any changes.

2. Click Record.
 - A 120 msec tracing will be displayed on your computer screen.
 - There should be 20 msec of inactivity followed by the 1 msec stimulus.
 - You will notice the artifact from the stimulus in your EMG channel. Approximately 30 msec later you will see the H-reflex appear if the stimulus was large enough and threshold was reached.

3. If nothing appears, confirm with the participant a stimulus was delivered and if the subject felt any tingling sensation.

4. If so, increase the current on the stimulator by 1 mA, then deliver the stimulus again.

5. Click Stop.

6. Repeat steps 2-5 until an H-reflex is recorded so its peak to peak maximum is at its highest. To do this you will need to use the double cursor function as show in Figure HN-6-L1. A tracing example is shown in Figure HN-6-L2.

7. Repeat the procedure with a slightly increasing stimulus, no more than 1mA at a time. Stop at any time the subject does not wish to continue.
Figure: Hoffman Reflex shown in the main window with cursors in position to measure the amplitude (V2-V1) of the full H-reflex.

Note: If the trace is upside-down, click the Invert button using the down arrow to the left of the Soleus channel.

Data Analysis

Background Information

The maximal peak to peak EMG amplitude is considered the maximal H-reflex. Note that the tracing is very similar to that seen in a reflex hammer test of the Achilles tendon – see the Achilles Reflex Lab.

The value of the H-reflex is that the location of the stimulus and the intensity of the stimulus are easily controlled via bypassing the muscle spindle completely. Afferent neurons receive direct stimulation from the electric current provided by the stimulator.

The H-reflex is highly variable if the supraspinal input is not controlled. That is to say, any activity that causes the brain to function differently could lead to altered descending nerve tract information that could affect reflex activity. Interneurons synapsing with the descending tracts could facilitate or inhibit reflex output.
An example of this is the Jendrassik maneuver where you try to pull your hands apart during the reflex measurement. Changes in temperature, limb position, auditory input, visual input, stress, etc. can all affect maximal H-reflex amplitude.

Procedure:

1. In the main window, double the display time so that the recording resembles the trace shown above.

2. Click and drag the cursors so that the left hand cursor is on the stimulus and the right hand cursor is on the peak of the response. Measure $T_2 - T_1$ for the time it took for the H-reflex to occur from the delivery of the stimulus.

3. With the right hand cursor still on the peak of the response, move the left hand cursor so that it is on the maximal downward spike of the H-reflex. Measure $V_2 - V_1$ for the amplitude of the complete Hoffman Reflex of the soleus muscle.

4. Once the cursors are placed in the correct positions for determining the reflex conduction time and the amplitude of the reflex response, record the value for $T_2 - T_1$, and $V_2 - V_1$ in the Journal. The value can be recorded in the on-line notebook of LabScribe by typing its name and value directly into the Journal. Values can also be recorded in separate data table.

Additional Exercises

- Try using the Jendrassik maneuver and determine the result on the Hoffman Reflex.
- Add a small weight to the foot.
- Alter the temperature, using either an ice pack or moist heat pack, and determine the H-reflex in both situations.
- Try collecting a maximal M-wave. Calculate the $H_{max}:M_{max}$ ratio which is the standard for reporting in sports medicine.