Fitness Assessment - Aerobic Fitness Testing

Equipment Required

PC or Mac Computer and USB cable

IX-TA data acquisition unit and power supply

A-FH-1000 Flow head with flow head tubing

A-GAK-201 Reusable mask and non-rebreathing valve

6ft smooth bore tubing (35mm I.D.)

5 Liter Mixing Chamber

iWire-GA CO₂/O₂ Gas Analyzer with filter and Nafion gas sample tubing

A-CAL-150/A-CAL-200 Calibration kit

Treadmill with adjustable speed and gradient or Fitness Bike

3 Liter Calibration syringe

Setup the IXTA and the iWireGA

- 1. Place the IXTA on the bench, close to the computer.
- 2. Use the USB cable to connect the computer to the USB port on the rear panel of the IXTA.
- 3. Connect the iWire-GA unit to the front of IXTA using the iWire-1 port.
- 4. Plug the power supply for the iWire-GA into the electric outlet. Insert the plug on the end of the power supply cable into the labeled socket on the rear. Use the power switch to turn on the unit. Confirm that the power light is on.
- 5. Plug the power supply for the IXTA into the electrical outlet. Insert the plug on the end of the power supply cable into the labeled socket on the rear of the IXTA. Use the power switch to turn on the unit. Confirm that the power light is on.

Setup the Metabolic Cart

- 1. Locate the A-FH-1000 flow head and tubing in the iWorx kit.
- 2. Plug the flow head tubing into channel A1 of the IX-TA, matching the colors.
- 3. Connect the other end of the flow head tubing to the flow head, making sure that the ribbed side of the tubing connects the red marked port on the flow head.
- 4. Locate the mixing chamber in the iWorx kit.
- 5. Connect end of the flow head to the flow head port of the mixing chamber, making sure that the white port faces the mixing chamber. Make sure the tubing is in an upright direction.
- 6. Locate the non-rebreathing valve, mask, and smooth bore tubing in the iWorx kit

- 7. Attach one end of the smooth bore tubing to the "Tubing to Mask" inlet of the mixing chamber.
- 8. Attach the other end of the smooth bore tubing to the calibration syringe.

- 9. Attach the mask to the side port of the nonrebreathing valve, using the provided adaptor, if needed.
- 10. Note: There are arrows on the valve that indicate the direction of air flow. The white port is the inlet and the clear port is the outlet. The Clean Bore tubing will be plugged into the clear port later when testing the subject.

- 11. Place the filter on the Sample In port of the iWire-GA in the lower right front corner of the gas analyzer. Attach the braided end of the Nafion sampling tube to the filter.
- 12. Connect the other end of the Nafion sampling tubing to the white "**To Gas Analyzer**" port on the mixing chamber near the Flow Head

- 13. Attach a Clear tubing to the outlet gas analyzer.
- 14. Attach the other end of the clear gas analyzer tubing to the "**From Gas Analyzer**" connector on the mixing chamber next to the smooth bore tubing

Software Setup:

1. Load the settings for RMR-SubmaxVO2RER if you have not done so already.

Image: Contract to the contract	File Edit	View Tools Settings Advance	ed Exterr	nal Devices Help Experiment						
Specific Vac Deploy time Data Total Inclusion (%) CO2 Interest (@, @, Q, fx Mean- 0000 %CO2 Seture Seture Seture Seture Seture Mean- 0000 %CO2 Calibrate Gas Analyzer Seture Seture Seture Mean- 0000 %CO2 Quick How Calibration Seture Seture Seture Mean- 0000 %CO2 Quick How Calibration Seture Seture Seture Mean- 0000 %CO2 Vice Calibration Seture Seture Seture Mean- 0000 %CO2 Vice Calibration Seture Seture Mean- 0000 %CO2 Mean- 0000 %CO2 Vice Calibration Seture Seture Mean- 0000 %CO2 Mean- 0000 %CO2 Time O Seture Seture Vice Vice 0000 mean Vice Vice 0000 mean Rel VOCO O.OO Seture Seture Vice Vice 0000 mean Vice Vice 0000 mean Rel VOCO O.OO Seture Seture Vice Vice 0000 mean Vice Vice 0000 mean Rel VOCO O.OO Seture Seture Vice Vice 0000 me		📃 🖾 🐼 🐈 🔍	×	📼 📝 ML 📉	Default View	A View				
Setup Concentration (%) Co	Spec 100	s/sec Display Time: 30.00) sec	Mark 📷		4			~ A	LL T2-T1(60 msec - 30 msec)= 30 msec
Calibrate Gas Analyzer 	Setun		🖙 CO2:E	xpired CO2 Concentration (%) CO	22 Filtered 🕀 🎕 🤤 🎪	1	7			Mean= 0.000 %CO2
Cultures Gas Analyzer 0 <td< td=""><td>. Joccup</td><td> *</td><td>5.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	. Joccup	*	5.1							
Quick How Calibration Add	Calibrat	e Gas Analyzer	0 23]						
Proces OCCUPATION OCCUPATION<	Quick F	low Calibration	0.9							
Mark Image: Control of Control	Propod	None	C2:Exp	pired O2 Concentration (%) O2 Fi	iltered 🕀 🔍 🔾 fx	- C				Mean= 0.000 %O2
Mark Image: Control of the spinometer Image: Control of the spino	TIONCOL		24							
Add Latate 0 14 1 <th1< th=""> <th1< th=""> <th1<< td=""><td>Mark</td><td>- ·</td><td>Q 18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<<></th1<></th1<>	Mark	- ·	Q 18							
Time 0 0 V2.V1=0.000 cmH20 Ret.VO2 0.00 0 0 0 Ret.VO2 0.00 0 0 0 Ret.VO2 0.00 0 0 0 0 Ret.VO2 0.00 0 0 0 0 0 Ret.VO2 0.00 0 0 0 0 0 0 Ret.VO2 0.00 0 0 0 0 0 0 0 Ret.VO2 0.00 0 <t< td=""><td>Add Lad</td><td>ctate 0 🛨 mmol/L</td><td>° 14</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Add Lad	ctate 0 🛨 mmol/L	° 14	-						
Time O			10 10 A1:Evr) aired Air Flow Spirometer 🔿 🦨	06					V2-V1- 0.000 cmH20
Rei V02 0.00	Time	0	10	,						VE 11- 5,555 cm 125
Ret VO2 0.00			- F2	5						
Rel.VCO2 0.00 C1Eprind Air Volume STPD VolAC(Expired Air How) @ @ @ A V2-V1= 0000 liters RE 0.00 3.5 0.00 5 0.00	Rel.VO2	0.00	E u							
Net CO2 0.00 ** CTExpired Air How) @ @ @ A V2-VI=0000 Here RER 0.00 9 35 0 0 REE 0 0 0 0 Meres 0.00 4 0 0 Meres 0.00 4 0 0 Meres 0.00 4 0 0 %Fat 0.00 6 2 0 %Fat 0.00 6 2 0 %Fat 0.00 6 2 0 %Fat 0.00 7 7 1000 fee %Fat 0.00 7 1000 fee <t< td=""><td>B-11/002</td><td>0.00</td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	B-11/002	0.00	40							
RER 0.00 0 RER 0 0 RER 0 0 RER 0 0 RER 0 0 METS 0.00 %Fat 0.00 %Fat 0.00 <td>Rei. VCO2</td> <td>0.00</td> <td>C1:Exp</td> <td>bired Air Volume STPD Vol.MC(E)</td> <td>cpired Air Flow) $\oplus \oplus \oplus f_X$</td> <td>1</td> <td>1</td> <td></td> <td>i</td> <td>V2-V1= 0.000 liters</td>	Rei. VCO2	0.00	C1:Exp	bired Air Volume STPD Vol.MC(E)	cpired Air Flow) $\oplus \oplus \oplus f_X$	1	1		i	V2-V1= 0.000 liters
RE O.OO <	RFR	0.00	- 36							
NEE O OS OS V2.V1= 0000 # METS 0.00 4 Image: Control of the Control		0.00	litere	2						
METS O.OO 4 V2-V1=0.000 # %Fat O.O 4 A <td>REE</td> <td>0</td> <td>0.5</td> <td>i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	REE	0	0.5	i						
METS 0.00 4 Image: Constraint of the sector		U	PHR:P	olar Monitor PHR 🕀 🎕 🔍 🎪						V2-V1= 0.000 #
xFat 0.0 0 0 0 xCarbs 0.0 0 0 0 Caloris 0.0 0 0 0 model model model model model model	METS	0.00	4							
%Fat 0.0 Calors 0.0 Mean-B000 bpm Calors 0.0 Calors 0.0 Mean-B000 bpm REC 0.0 0 0 0 0 ImmoVitie < 1500 sec 2250 sec 29.99 sec			1≇ ())						
XCarbs 0.0 Callonia Callonia <thcallonia< th=""> <thcallonia< th=""> Callonia</thcallonia<></thcallonia<>	%Fat	0.0								
Calories 0.0 40 180	%Carbs	0.0	ISE C2:He	art Rate P.Rate(Polar Monitor)	A C A	1				Mean= 0.000 bpm
Calories 0.0 Image: Contract of the c			180)						
ImeOfFile < 100- 60-	Calories	0.0	E 140)						2
REC Analyze 0 7.500 sec 15.000 sec 22.500 sec 29.990 sec ImmoOfHie <			100)-	2					
REC Analyze 0 7.500 sec 15.000 sec 22.500 sec 29.990 sec TimeOffile <			60)	L.	-				
TimeOffile <	REC	Analyze		0	7.500 sec	2)	15.000 sec	3	22.500 sec	29.990 sec
	TimeOfFile	<								>

- 2. Click the **Setup** button shown in the left side window. The Online Setup Dialog window will open
 - Enter your subject's information or Load a subject from a previously saved file.

Online Metabolic Setup Dia	log
Subject Settings	
Load Subject	
Name	
Protocol	
Age	30
Sex	Male 🔻
Height(cm) 🔻	160
Weight(kg) 👻	80
Maximum Heart Rate	200
Blood Pressure	120 × / 70 ×
	OK Cancel

From Gas Analyzer

- Click "Settings" to change any parameters you wish to view
- Click OK to save the changes.

Calibrating the iWire-GA Gas Analyzer

Note: Warm up the iWire-GA for at least 15 minutes prior to use. Make sure the calibration gas tank is located close to the Fitness Assessment equipment.

This procedure will calibrate the O₂ and CO₂ channels.

- 1. Connect the gas sample tubing of the A-CAL-150 Calibration Kit to the output barbed connector of the gas regulator.
- 2. Click the **Calibrate Gas Analyzer** button. Click Perform Quick Software Gas Calibration.
- 3. Follow the directions as prompted. Room air will be sampled for 10 seconds. Calibration gas will be sampled for 20 seconds.
- 4. If necessary, move the cursors into correct position.
- 5. Click OK.

Advanced Units (Conver	sion Di	alog								22]
Place the room a	air curs	ors aro	ir.1 F	RoomAii gion corr	r:2 respond	ding to	Room	Air.		CalGas:1	CalGas:2	_
	scuiso				-spond	ing to ti	ie cai v	Jas.				
Cal Gas (%):	02 = 02 =	20.9	% CO2 = % CO2 =	5.0	% %							
									Can	cel	ОК	th.

Quick Flow Calibration :

A pre-saved .iwxfcd (file IXTA-longFlowHeadCalibration) is already loaded for you.

If you prefer, click "Load", to load the .iwxfcd file created when you performed the optional full flow head calibration.

Perform the Quick Flow Calibration by clicking the button and following the prompted directions as they pop up on the LabScribe Screen.

- After the calibration data has been collected, The Spirometer Calibration dialog window will pop-up.
- Position the two cursors on the flat line to either side of the recording shown.
- Change the temperature to 29 deg C.
- Click the 'Calibrate difference between cursors to' button.
- Click OK.

	-
Spirometer Calibration Dialog X	
Spirometer IX-TA 🗸	
Type of Flowhead Calibrated \smallsetminus	-
Calibration Curve Data: Load IXTA-longFlowHeadCali	Ł
Internal Barometric Sensor 🗸	
Mixing Chamber Temp.(Avg of 37deg and Room Temp)= 29.0000 deg C	
	J
Baseline: Use first \checkmark 10 seconds as zero	-
Calibrate difference between cursors to 3 litres. Calibration Completed!	
OK Cancel	

Prior to performing your test:

Determine the correct concentration of O2 in the mixing chamber:

- Click on the Preview button.
- Record room air by sampling air through the mixing chamber. Look at the value for O2 as you record for approximately 10 seconds. It should be reading between 20.7% and 21%.

NOTE – If the O2 channel is not reading between 20.7% and 21% - REPEAT the Quick Flow Calibration.

• Click on the Stop button.

Now you are ready to perform your test. Some sample protocols are provided on the CD and on the website.

Performing the Test:

- 1. Attach the head gear to the mask.
- 2. Instruct the subject to try on the assembly. Adjust the straps so that the mask fits the subject comfortably. Make sure there are no leaks around the mask.
- 3. Connect the smooth-bore tubing to the clear outlet of the non-rebreathing valve. There are arrows on the valve that indicate the direction of air flow.
- 4. Make sure the flaps on the non-rebreathing valve are facing the right way.

- 5. Remove the smooth-bore tubing from the mixing chamber to record baseline.
- 6. Click the **Record** Button to start recording data
- 7. Or choose a protocol from the protocol list and click the green arrow to start recording.

Phase 1

0

mmol/L

8. Wait at least 10 seconds for the system to zero, then reconnect the smooth-bore tubing to the mixing chamber.

Mark

Add Lactate

- 9. The test has now started.
- 10. Mark the data for each stage of the exercise protocol you have chosen to use. You can enter text in the text area next to the Mark button and click on the Mark button, or choose one of the preset marks from the drop down list.
- If lactate values are measured during the test, you may enter them in the record using the Add 11. Lactate button.
- Click Stop and then Click Save As to save your data 12.

Analyze your data

- 1. Click Analyze to pull up the automated metabolic calculations and chart generator.
- 2. Make sure channels are set correctly.
- 3. Click Settings: Your subject information should be automatically populated into the settings.
- Click Calculate to generate the table as seen below. 4.
- 5. To generate a Report, click on the Report Tab. Reports can be customized as well.
- Refer to the metabolic module manual in the LabScribe manual for more information. 6.

Last Dolgen Loss Dolgen Last Dolgen <thlast dolgen<="" th=""> <thlast dolgen<="" th=""></thlast></thlast>	
Nome Image:	
Interface Image is a set of the set o	
Are in the inter Are inte	~
Amerge loss	
Inter Answer (res) Image	140
Annual (sec) Image	-In
Norm Norm <th< td=""><td>~</td></th<>	~
Height Inn Image	
State Table Table <th< td=""><td></td></th<>	
Numeric Harder, Ere Torie Adv/CO2 Red/VO2 Red/VO2 <thred th="" vo2<=""> Red/VO2 <thred th="" vo2<=""></thred></thred>	
Imput CD2 (N) IP	
Hump, C32 (TN) PAS	
Page CQ1 (N) Dial Dia <thdial< th=""> Dial</thdial<>	
Biolog Pressure 0 Image: 1 Image: 20:00 4:0:00 10:0000 10:00000 10:0000 10:0000 10:0000 10:00000 10:0000 10:0000 10:00000 10:00000 10:00000	
Image: Number 0 Image: Num	
These Name Viewee Vi	10:0 000
Set Time Abs/V02 Abs/V02 Rel/V02 REV REV N/H N/H N/H Columns F-CO2Man (N) V V/H H/H Mark 100 0.00 L/mmin Ummin Statuli 00 2 statuli 00 2 statuli 00 2 statuli 00 2 statuli 00 1.00/213 1.01/210 0.00000 1.14/2100 0	
Set Tame Aba/VO2 Aba/VO2 Rel/VO2 REI MET Nort State Calmin FeCOMm (N) VI Wate Hat Mark 100 0.04 1.099471<0 2.099470 2.099	
Image: No. 1 Sec. 1 Umain: 1	
Pro: 00.40 0.39400 0.35420 0.29100 0.291723 0.29129 1.29729 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.237232 0.00000 1.247218 0.237234 6.58723 0.147213 0.00000 1.247218 0.147213 0.217234 0.147213 0.00000 1.248718 0.147214 0.587235 0.148718	
Pres 00.44 2.420000 2.103828 2.273000 2.013000 2.023000 0.120210 2.1208284 0.120000 12.472144 5.508155 0.000000 12.472144 Ym 01.44 2.23300 2.013017 2.23300 2.013017 2.23300 2.01401 2.23000 5.508155 0.000000 12.4472144 4.50228 4.23000 5.508155 0.00000 12.4472144 4.50228 4.23007 6.508155 0.00000 12.4472144 Ym 01.44 2.88076 2.54076 5.758786 4.57807 6.508157 0.00000 12.441814 Ym 01.44 2.88076 2.64112 2.881787 2.980157 0.881287 12.48007 4.500066 4.22128 6.50807 0.00000 12.45806 12.48016 4.20107 7.58836 0.00000 12.45806 12.48017 4.50016 4.20107 6.53837 0.00000 12.45806 12.48017 4.50116 0.00000 12.48010 12.48010 12.48017 4.501161 0.00000 12.48010	
Two Tit JULY J	
New ULA 255580 244515 3445368 3445368 3445368 3445368 354550 1545012 1545012 1452027 6508053 000000 1248101 1*e 0144 284402 244055 2386050 1045207 1452027 1452027 1452027 6508053 000000 1248107 1*e 0144 286407 244055 238605 08170 09852328 381850 1452027 14520247 4205305 4356807 000000 1248180 1*e 0144 128657 281875 381850 1248028 420208 420208 7258684 420210 715108 620866 420210 715108 620867 420800 715710 620867 420800 715717 620867 420800 715717 620867 420800 715717 620867 420800 715717 620807 420807 420808 620000 1248207 420807 620807 420807 620807 420807 62087 420807	
New 0.014 2.94498 2.94498 2.94498 2.94598 3.93598 3.93598 3.93598 2.93598 2.93598 2.94598 4.24807 8.25488 4.25888 4.25888 4.25888 4.25888 4.25888 4.25888 4.10817 5.91019 0.00000 1.25888 Yee 9124 2.989514 2.444132 2.939530 2.108557 7.938848 1.448270 2.55488 4.10250 4.20818 7.938848 0.00000 1.254288 Yee 94.24 1.04488 2.94493 2.944953 2.944963 2.944963 2.944963 2.949973 2.940963 7.938848 0.00000 1.532887 Yee 94.24 1.044842 2.944953 2.944963 2.944963 2.944963 2.944973 2.944963 2.944973 2.94498 2.944973 2.94498 2.944973 2.944973 2.944973 2.944973 2.944973 2.944973 2.944973 2.944973 2.944734 2.944734 2.944734 2.944734 2.944734 2.944734 2.	
Ver Sile James James <thjam< td=""><td></td></thjam<>	
New Use Use <td></td>	
Yare 94.54 1244462 2.844953 2.934963 2.934963 2.936964 2.1512396 2.131739 PR.842147 1.522384 1.529364 1.539367 1.539367 1.131720 0.600000 1.539367 1.539367 1.131720 0.601000 1.5393772 1.539364 1.539367 1.539364 1.539367	
Yes 94.4 296000 2.17780 390813 27.08189 0.32077 21.01.480224 0.11757 21.39949 N.40235 14.49444 15.59557 4.13413 71.97272 0.00000 125.90001 Yes 0.54 2.09774 2.44178 3.598184 4.13413 13.59818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 13.39818 4.13423 4.13423 4.30000 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818 13.39818	
New OSA ZOMPY Ziellick Disselick Disselick <thdisselick< th=""></thdisselick<>	
2 Ves 55.44 45.984.5 35.312.3 39.781.88 34.0194.7 0.000002 124.800.7 10.10011 47.780.9 55.870.9 51.370.9 41.397.0 41.396.2 772.236 0.000000 124.800.17 10 3 Ves 50.14 1.720.00 44.890.0 34.290.01 32.980.1 32.980.11 32.980.1 34.385.25 34.380.25 37.800.26 30.890.27 34.400.27 32.980.1 34.385.25 34.380.27 34.380.25 37.800.26 30.980.26 30.980.26 30.980.27 34.480.27 34.380.27 43.380.27 44.482.28 84.980.26 30.980.27 37.570.6 30.980.27 34.480.27 34.380.27 44.482.28 84.980.26 30.980.27 <td></td>	
3 1 5	
N N	
No. No. <td></td>	
Vec 08.14 4.3887.0 4.500.05 41.2017 1.027794 1.081.4687.07 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.4687.77 1.027794 1.081.207 0.000000 1.01.597.77 1.081.208.77	
New 08.44 4.898075 4.902572 46.002947 46.12899 1.045276 1.025207 0.000000 1.154.1275 1.0000000 1.154.1275 1.045276 1.154.1275 1.0000000 1.154.1275 1.445403 1.155.177 4.459000 1.155.178547 0.000000 1.154.1275 1.4459107 4.459000 1.155.178547 0.000000 1.154.12755 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.154.1275 1.144.1195	
Vrs 0614 4.5495.07 4.8297.40 44.662.26 47.395.08 1001590 33521.463.854 1.1377.4 9.000000 22.3476.07 16.8491.07 4.4199.13 116.843.844 0.000000 159.178.32 Ves 0.44 5.45166 5.441.885 64.452.16 51.317.967 1.019415 71.30000 100.00000 23.377.85 9.8898.17 4.4199.12 116.843.843 0.000000 159.178.35 2.00 Ves 5.05160 5.588.46 64.302.05 51.317.967 1.0194.01 71.3198.04 0.200000 23.307.58 9.8898.17 4.4198.10 114.546.17 0.000000 159.178.35 2.00 Ves 51.418 5.30160 5.3051.06 5.000105 11.025.17 8.4186.81 0.000000 23.398.00 17.318.00 1.014.22.05 1.014.22 17.318.00 1.014.22 17.318.00 1.014.22 17.318.00 1.014.22 1.014.22 17.318.00 17.318.00 17.318.00 17.318.00 17.318.00 17.318.00 17.318.00 17.318.00 17.318.00	
Wes Obd Sublick Sublic	
Vm D244 SADBAD SADBAD MASSMAN MASSMAN<	
22 Ves 1044 5.170671 5.427053 50.77627 51.02771 11.05527 58.76514 14.508000 102.5080000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 102.508000 </td <td></td>	
Ves 11.14 3.000000 5.170011 31.000000 50.00000 10.000000 30.451444 17.401.355 1.400.131 171.100.351 0.0000000 171.400.351 Ves 11.44 4.467944 5.448/04 61.350011 11.3119 35002.2645811 13.073849 0.000000 23.3302.0 17.300374 23.342.21 0.000000 174.62354 0.00000 174.62354 0.000000 174.62354 0.000000 174.62354 0.000000 174.62364 0.000000 174.62364 0.000000 174.62354 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.000000 174.62364 0.0000000 <	
No. 123 24 24 25 25 25 26 27 23 23 23 23 24 24 25 26 26 26 26 26 26 26 26 26 26 2	
View 23 23 23 24 25 23 2	
Mean 177300 SR1015 Means 177300 SR1015 Means 1454455 SR20041 4_342561 96.767790 0.000000 141.94456 29 50 0.960205 1.275000 9.411771 12.50206 0.000993 7.41.294481 14.664402 14.664402 0.010713 0.3195001 14.30552 0.000000 11.756514	
29 50 0.960.205 1.2760.00 9.411773 12.50.006 0.069983 7447.256948 2.680649 14.6668402 14.6668402 4.851024 0.351073 0.355903 34.396522 0.050000 17.756534	
00 Max 5,20488 6,17433 51,86487 85,50013 1,17513 9887,481742 14,81859 43,379251 100,00000 24,45344 17,50274 44,1259 171,198,20 0,00000 114,83596 0,00000	

Metabolic parameters and plots of VO₂, VCO₂, and RER vs. Time, displayed in the Offline Metabolic Calculations window used to analyze data collected during an aerobic fitness test.

Notice that the VO_2 and VCO_2 values increase quickly as the subject performs more strenuous segments of the test.

Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER)

Exercise 1: Changes in CO₂ and O₂ in a closed chamber, and RER in an endothermic animal.

Aim: To determine mean RER of an endotherm at rest.

Approximate Time: 15-20 minutes or longer depending on the animal

Procedure

- 1. Place the animal in the chamber and close the lid securely.
- 2. Click on the Record button. Type **Mouse/Rat** in the Mark box to the right of the Mark button. Press the Mark button to mark the recording.
- 3. Click the AutoScale All button.
- 4. On the Expired CO2 Concentration (%) channel, notice that the CO₂ concentration shows a continuous steady rise in level throughout the recording.

Note: During the first few minutes or so of the recording, the small animal chamber is filling with expired air from the organism inside. Since this is a closed system, the concentration of CO_2 continues to rise as the animal exhales into the chamber.

• The time that it takes the chamber to be filled with expired air and a steady increase in the level of carbon dioxide will depend on the volume and respiration rate of the organism and the volume of the small animal chamber. It will take longer to fill the chamber if the organism's respiration rate and tidal volume are low, or the animal is very small.

Warning: The CO_2 concentration will continue to rise throughout the experiment and levels can become toxic to the animal in the chamber. Remove the animal immediately if the CO_2 levels reach 3.5%.

- 5. On the Expired O2 Concentration (%) channel, notice that the O_2 concentration will show a steady decrease as the animal is using the O2 in the chamber. As pointed out in the previous step, the size of the chamber, the tidal volume, and respiration rate of the organism, determine the time it takes for the concentration of oxygen to decrease significantly.
- 6. On the RER channel, an equation programmed in the software determines RER based on the relative levels of CO_2 (which is increasing) and O_2 (which is decreasing).
- 7. Continue to record until the concentration of carbon dioxide in the chamber reaches 3%.

Note: Remember to remove the animal from the chamber immediately if the carbon dioxide concentration reaches 3.5%.

- 8. Once the appropriate data is recorded, click Stop to halt the recording. Your recording should be similar to the data shown below.
- 9. Select Save As in the File menu, type a name for the file. Click on the Save button to save the data file.
- 10. Remove the animal from the chamber and place it back into its container.
- 11. Clean and dry the small animal chamber if necessary.

RER Channel Set Up

- 1. Display the complete data recording in the Main window. Use the Display Time icons to adjust the Display Time of the Main window to show the complete recording on the Main window.
- 2. Select and display a section of data that shows the change in CO_2 concentration at 1%.
- 3. This can be done by:
 - Clicking on and dragging the cursors to either side of the data, and looking at the V2-V1 value in the upper right corner of the Expired CO2 channel.
 - When V2-V1 value is equal to 1%, look at the T2-T1 value in the upper right to determine the time it took for the CO₂ concentration to change by 1%.
- 4. Click on RER Expired CO2 Concentration (%) on the RER channel. Choose Setup Function from the drop down list. This will open the RER Calculation Dialog window.
- 5. Setup the RER calculations:
 - Choose the appropriate RER Type by clicking on the down arrow and choosing Closed Small Animal Chamber.
 - Check the O2 and CO2 channel information so that they are being calculated from the correct channels.
 - Change the Time(s) to average to 30 seconds
 - Change the Delta Time(min) to be the T2-T1 value noted in Step 2. This is the time it took for the CO2 concentration in the small animal chamber to change by 1%.
 - Click OK.
- 6. The recording on the main window will now have a histogram on the RER channel.

💐 Small Animal RER 2 - IWX214 - None -	- LabScribe v3			- 0 ×
File Edit View Tools Settings Ad	dvanced External Devices Help			Ast
i 🗋 🖮 🔒 i 🖾 🕺 🕌 i	🧏 🔲 💷 🥕 📖 🗖 🕰 🧟	👫 🔆 📴 Default View	i Di Off Preview R	REC
Speed: 100 s/sec Display Time: 12	:18.780 Mark 👻		ALL T2-T1(13:7.9	913 - 3:26.593)= 9:41.320
A1:Expired CO2 Concentration (%) BN				V2-V1= 1.000572 5
2.2-				
1.9-				
1.6-				
1.3-		A		
2 ² 1-		the second secon		
0.7-	and the second			
0.4				
0.1-				
-0.2-				
 A2:Evaluation (%) PNC 	A A A A			V2.V1= -1.100100.9
Aziexpired Oz Concentration (%) BNC				V2-V1= -1.100100
21.5-				
21.2-				
20.9-				
20.0-	and the second se			
20-		the second		
19.7-				
19.4-				and the state of the second
19.1-				
10.0				
 C1:RER RER(Expired CO2 Concentratio 	$(\%)$ \oplus \oplus \oplus f_X			V2-V1= 0.050802
0.12-				
0.00				
0.08-				
0.04-				
*				
0-				
-				
-0.04-				
-0.08_				
2:22.053	5:26.743	8:31.443	11:36.133	14:40.82
TimeOfFile <				>
Done Calculating data for Block 1				

Figure AMe-1-L1: The recording of the expired CO2 over a period of 28 minutes showing a change in concentration by 1%.

RER Type	Closed Small Animal Chamber \lor
O2 Channel	Expired O2 Concentration (%) \sim
CO2 Channel	Expired CO2 Concentration (%) $$
Time(s) to average	120
Delta Time(min)	38
Cancel	ОК

Figure AMe-1-L2: RER Calculation Dialog window.

Data Analysis

- 1. Scroll to the beginning of the recording where the histogram is not a straight line. You should be able to see a step-like histogram.
- 2. Click and drag the cursors to either side of the step-like histogram.

- 3. Click the Zoom between Cursors button on the toolbar to expand this section of data to fill the window.
- 4. Click AutoScale on all channels. Your data should look like the data seen in the image below.

Figure AMe-1-L3: The RER channel showing the histogram for the ratio of CO2 to O2 in the endothermic organism.

- 5. Click on the Analysis window icon.
- 6. Look at the Function Table that is above the uppermost channel displayed in the Analysis window. The functions, Mean, T2-T1, and V2-V1 should appear in this table. Values for these parameters on each channel are seen in the table across the top margin of each channel.
- 7. Once the cursors are placed in the correct positions for determining the CO₂ and O₂ concentrations, the values for these parameters can be recorded in the on-line notebook of LabScribe by typing their names and values directly into the Journal.
- 8. The functions in the channel pull-down menus of the Analysis window can also be used to enter the names and values of these parameters in the Journal. To use them:
 - Place the cursors at the locations used to measure the concentrations and RER.
 - Transfer the names of the mathematical functions used to determine these data to the Journal using the Add Title to Journal function in the Expired CO2 Channel pull-down menu.
- 9. Transfer the values for the data to the Journal using the Add All Data to Journal function in the Expired CO2 Channel pull-down menu.
- 10. Repeat this procedure for the Expired O2 Concentration (%) channel.

- 11. The values for the following parameters are determined when the cursors are positioned as directed:
 - Mean concentration of CO₂ in expired air, which is the value for Mean on the Expired CO2 Concentration channel.
 - Mean concentration of O₂ in expired air, which is the value for Mean on the Expired O2 Concentration channel.
- 12. Mean RER, which is the value for Mean on the RER channel. This is calculated by dividing the expired CO₂ value by the expired O₂ value to get the RER ratio as setup previously.
- 13. Record the T2-T1 value that is used to measure the mean values of CO_2 , O_2 and RER.
- 14. Record the values in the Journal using one of the techniques described in Steps 6 or 7.
- 15. Record the values for the Mean CO₂ and O₂ concentrations in expired air in Table 1. Also record the RER and T2-T1 values.

Exercise 2: Changes in CO₂ and O₂ in a closed chamber, and RER in an ectothermic animal.

Aim: To determine the changes in CO_2 and O_2 volumes of an ectotherm and make a comparison with the values obtained from an endotherm.

Approximate Time: 15-20 minutes, depending on the animal.

Procedure

- 1. Use the same procedures used in Exercise 1 to record the CO₂, O₂ and RER values from an ectotherm.
- 2. Place the ectotherm (lizard, frog or snake) into the clean, dry small animal chamber and close the lid securely.
- 3. Mark the recording with comments that indicate the organism in the chamber.
- 4. Click Record to begin the recording.
- 5. Record until a concentration of 3% carbon dioxide is reached.

Note: Remove the animal from the chamber immediately in the CO₂ concentration reaches 3.5%.

- 6. Click Stop to halt the recording and Save your data file.
- 7. Remove the animal from the chamber and place it back in its container.

RER Setup and Data Analysis

- 1. Use the same procedures used in Exercise 1 to set up the RER channel showing a 1% change in CO₂ value.
- 2. Make any necessary changes on the RER channel by opening the RER Calculation dialog window.
- 3. Follow the procedures in Exercise 1 for data analysis of the beginning section of the recording for the ectotherm showing the step-like histogram.
- 4. Determine the oxygen (O_2) , carbon dioxide (CO_2) , and respiratory exchange ratio (RER) values. Note the T2-T1 value for the section of data with the step-like histogram.
- 5. Record the values for the Mean CO₂, O₂ concentrations, RER, and the T2-T1 value in Table 1.

Questions

- 1. During which experimental period was the endotherm's expired CO₂ the highest? In which period was it the lowest?
- 2. During which period was the endotherm's expired O₂ the highest? In which period was it the lowest?
- 3. During which period did the endotherm have the highest RER? In which period was the RER the lowest?
- 4. How do the values obtained from the endothermic animal compare to those from the ectothermic animal?
- 5. How does the RER values from these organisms relate to their overall metabolic rate?
- 6. Does ambient temperature have anything to do with their overall metabolism?
- 7. What would happen to the RER values for the ectotherm if you lowered the ambient temperature? The ectotherm?
- 8. For what reason should the animal not have eaten within an hour of performing these experiments? Evaluate the diet of these animals. How does diet correlate to the RER values?

Figure AMe-1-L4: The expired oxygen and carbon dioxide concentration and RER of a small animal as displayed in the Analysis window. The cursors are in position to measure the mean values of the selected interval.

Optional Exercise

RER is a temperature dependent value. As an optional exercise, the animals can be cooled and RER can be calculated as they return to normal body temperature or to room temperature.

Table AMe-1-L13: Table for recording Mean CO2, O2 and RER values for the endothermic and ectothermic organisms. T2-T1 values are also recorded.

Environmental Co	onditions	Organism	Mean Concentrat the Chamber	Mean RER	
Temperature T2-T1 (min/sec) for RER calculation			CO ₂	0 ₂	
		Endotherm			
		Ectotherm			

Weight Normalization Calculation

Normalized Expired O₂

O2 / [(weight(g) / mass unit)]*effective mass

Example: O2 = 0.83 ml/min, weight = 25 grams, mass unit = KG, effective mass factor (slope) = 0.75

 $O2_{norm} = 0.83 / (25/1000)^{0.75} = 13.2 \text{ ml/KG/min}$

Using an effective mass factor of 1 eliminates any effective mass correction. This can be repeated for the CO_2 values. When RER is calculated using normalized values, the weight of the organism is taken into account.

```
Animal Metabolism – RER – Labs
```