PV Loop Analysis with LabScribe

Introduction

Ventricular pressure-volume loops are used to study many quantitative aspects of cardiac contractility. A single pressure-volume loop is a two-dimensional representation of the relationship of ventricular pressure to volume over time. The **PV Loops Advanced Analysis Module** integrates the variables and measurements necessary for the recording, analysis, and interpretation of ventricular pressure-volume loops. The **PV Loops Advanced Analysis Module** performs both baseline and occlusion analyses.

The **PV Loops Advanced Analysis Module** requires a separate license. The first time you select **PV Loops**, you will be asked for a username and a serial number. Contact iWorx Systems for more information.

This document includes a step by step tutorial for using most of the features of the **PV Loops Advanced Analysis Module** as well as a more detailed **Reference** section that covers the material in the tutorial, and adds additional context and detail. To use the step by step guide, you will need a recording with ventricular pressure and volume (or conductance) channels. This can be from any mammalian species. In order to use the online analysis part of the module, you will need to be recording these parameters as you proceed through the tutorial. This file can then be saved and used in the offline analysis tutorial.

PV Loop Analysis: Step by Step

The PV Loops Advanced Analysis Module is accessed through the PV Loops submenu of the *LabScribe* Advanced menu. Both real-time Online Calculations and more sophisticated Offline Calculations are possible.

Online Calculations Offline Calculations

PV Loops submenu

PV Loop Online Calculations

It is possible to generate PV Loop calculations and graphs in real time.

To use the Online Calculations:

- Prepare the animal and configure the hardware and software to record ventricular pressure and volume measurements on two *LabScribe* channels. The volume measurement may be a conductance measurement or a calibrated or uncalibrated volume.
- 2) Record a sample and ascertain that the pressure and volume channels are recording data at the scale you desire. Stop recording while you configure the online analysis.
- Choose Online Calculations from the PV Loops submenu to display the online PV Loop Toolbar above Channel 1.

	x Pmin dPmax	dPmin Vmax 0.0 0.0	Vmin 0.0	ESV 0.0	EDV 0.0	SV 0.0	CO	EF 0.0	SW 0.0	maxPwr	plPwr 0.0	(
Online PV Loops Toolbar.					-							1
1												
 Click on the down arrow on the 	e left side of	t the PV L	oop	Tool	bar t	o di	splay	yan	nenu	with	three	ļ
choices: Setup, AutoSize, and	d Set Font	Size.										
Setup												
AutoSize												
Set Font Size												
PV Loon Onling Setup menu												
v Loop Online Selup menu.												
Choose Setup to open the Or	nline Calcu	lation Se	tup d	ialog								
Online Calculation Setup						X						
Pressure Channel LVP -	Calci	ulations										
Volume Channel IV V	Beat	t #(#)										
Average	Hea	ie(sec) irt Rate (HR)										
Ourles	End	Systolic Pressu	ure (ESP)									
Cycles V Z	Max	i Diastolic Press « Pressure (Pma	sure (EDF ax)	·)		=						
	Min	Pressure (Pmi	n)									
	MIn	dP/dt (dPmax dP/dt (dPmin)))									
	Max	Volume (Vma	x)									
	End	l Volume (Vmir Systolic Volum	ne (ESV)									
	End	Diastolic Volu	me (EDV)		-						
Export to Journal 🔻				-	Browse							
Set the thresholds for detecting a cycle using the	two horizontal cu	rsors.										
Ose percentage of Max and Min Scaling												
O Use absolute values												
0												
	0 0 0	0.0	0	2 0								
	-A A A	$+\Lambda$ Λ	H (1 - 1	ĿΑ	A						
		ロアモノモ	(\land)	\cup	\cup	\cup						
		$\varphi - \omega - \omega$										

- 6) From the **Pressure Channel** and **Volume Channel** menus, choose the ventricular pressure and volume channels from your recording.
- 7) Once you select the **Pressure Channel**, a sample of the recording will be displayed at the bottom of the dialog. Set the thresholds for cycle detection by adjusting the Max and Min blue horizontal lines so that all cycles pass through both lines.
- 8) As you record data, cycles will be detected as either a percentage of the amplitude of the cycles based on where you placed the Max and Min lines, or as the absolute values of their set location. Choose which you prefer from the two choices above the sample recording.

- 9) From the Calculations menu, control-click on those variables you would like to record in the data boxes of the PV Loop Toolbar. To remove a variable after you have selected it, control-click on that variable. Definitions of all variables can be found in the PV Loops Analysis: Reference section.
- 10) In order to compensate for variation from cycle to cycle, it is possible for LabScribe to average a user selected number of sequential cycles. Enter this number in the Cycles to Average text box. Start with a low number and adjust upward as necessary. Alternatively, Time to Average may be entered instead.
- 11) Click the Export to File menu item to send the data recorded in the PV Loop Toolbar as a .csv file to a location chosen in the dialog that opens. The other alternatives send the data to the LabScribe Journal (Export to Journal) or do not export the data at all (No Export).
- 12) Click **OK** to close the dialog.
- 13) Return to the PV Loop Toolbar menu (accessed by clicking the arrow) and choose AutoSize. The size of the data boxes and the titles will be adjusted to the number of variables you have chosen.
- 14) From the **PV Loop Toolbar** menu, choose **Set Font Size**. The font size of the data box values can be chosen from the dialog that opens.
- 15) Resume recording. The pressure and volume channels, and any computed channels, will be displayed on the left side of the Main Window, the changing variables will be displayed in the data boxes of the PV Loop Toolbar.
- 16) A real-time pressure-volume XY graph of the screen data can be displayed by clicking on the XY Graph icon in the Toolbar. The position in the XY Graph of the two vertical cursors in the recording are indicated by two moving markers. To change the proportion of the screen devoted to the graph, move the mouse cursor over the left border of the graph until you see a double-headed arrow. Click and drag to change the size of the graph.

The online PV Loop display, with the XY Graph option activated.

17) Save the recording for offline analysis.

PV Loop Offline Calculations:

The offline PV Loop Calculations dialog allows sophisticated offline analysis of previously recorded ventricular pressure-volume data.

To perform offline PV Loop analysis:

- 1) Open the recording from the online analysis or another file with previously recorded ventricular pressure and volume data.
- Choose Offline Calculations from the PV Loops submenu to open the offline PV Loop Calculations dialog. The panels of this dialog can be resized by moving the mouse cursor over the boundaries until a double-headed arrow appears, and dragging the boundaries to resize the panels.

Offline PV Loop Calculations dialog.

- 3) Familiarize yourself with the offline PV Loop Calculations dialog, illustrated above.
 - Across the top of the dialog, in the channel display area, are samples from the pressure and volume channels of the recording.
 - The tabbed configuration dialogs are on the left below the recordings.
 - An XY graph window on the right displays the PV Loops Graph, or one of a selection of other XY graphs illustrating pressure-volume relationships.
 - Between the configuration dialogs and the XY graph window is the **Cycles Selected** list, an editable list of the cycles that can be displayed and analyzed.
 - The Data Table is located across the lower part of the dialog.

To configure the Channels:

1) Click on the Channels tab, opening the Channels configuration dialog.

Channels	Settings	Results	Display	
Pressure (Channel (LVP	•	mmHg 🔻
Volume (Channel (LV_V	•	uL 🔻
ECG (Channel (None	•	

PV Loops Channels configuration dialog.

- From the Pressure Channel menu, choose the channel with the ventricular pressure recording. Choose the pressure unit from the menu to the right.
- 3) From the **Volume Channel** menu, choose the channel with the ventricular volume recording. Choose the volume unit from the menu to the right.
- 4) Optionally, choose an ECG channel if there is one on the recording.

Once the pressure and volume channels are selected, the recordings of those channels will be displayed in the channel display area at the top of the dialog and the **PV Loops Graph** will be displayed in the XY graph window.

5) Select an area of the recording to be analyzed by moving the two vertical cursors in the channel display area to designate the section to be analyzed. Only those cycles will now be displayed in the PV Loops Graph, and the cycles will be listed by number in the Cycles Selected list to the left of the graph.

To configure the Settings:

1) Click on the Settings tab, opening the PV Loops Settings configuration dialog.

Channels Settings Results Display
Use ECG for detecting ED
ESPVR Fit type Linear
EDPVR Fit type Exponential
ES Algorithm: Max PV Ratio Offset Calculated ES point by
Offset Calculated ED point by 0
Calculate PRSW using: EDV -
Tau: Fit upto 5 mmHg above EDP
Cycle Detection Threshold Sensitivity 4
Ventricular Wall Volume 0
Load Occlusion Data Save Occlusion Data
Get V0 from: Current Data

PV Loops Settings configuration dialog.

Starting at the top of the PV Loops Settings configuration dialog:

- 2) Check whether you wish to use an ECG recording for the detection of end-diastole (ED).
- Choose Linear from the ESPVR Fit type menu. A linear fit is the default choice for the End Systolic Pressure-Volume Relationship (ESPVR) data, although an Exponential fit is an alternate choice.
- 4) Choose Exponential or Exponential with Constant from the EDPVR Fit Type menu.
- 5) Choose Max PV Ratio from the ES Algorithm menu. The maximum pressure-volume ratio (Max PV Ratio) will be used to compute end-systole (ES) in each cycle, and is the default value. Maximum pressure (Max P), and minimum or maximum derivatives of the pressure (Min dP or Max dP) are alternate choices.
- End-systole will be offset from the selected value in Step 5 by a value selected in the Offset Calculated ES point by menu. This can be changed as desired.
- 7) Enter 0 into the Offset Calculated ED point by menu. This value can be changed as desired.
- Specify end diastolic volume (EDV) as the value that should be used to calculate the preload recruitable stroke work, PRSW, a measure of contractility. The alternate choice is the maximum volume (Vmax).
- 9) Enter the number of mmHg above end diastolic pressure (EDP) that should be designated as the uppermost point to be used to create the best fit line from which Tau (the time constant of blood pressure decrease during diastole) is computed.
- 10) Enter 4 as the number of cycles that should be used to determine the Cycle Detection Threshold Sensitivity. By default, a threshold sensitivity of 4 is used to detect cycles. If each cycle is not being detected properly, the sensitivity can be adjusted.
- 11) The Ventricular Wall Volume can be compensated for by entering a value in the text box.
- 12) How to load and save occlusion data is described below.

To display and analyze the PV Loops Graph:

- 1) Familiarize yourself with the **PV Loops Graph**, which will be displayed in the XY graph area for all the cycles in the selection and is illustrated below.
 - By default, the highlighted cycle in the Cycles Selected window is shown in red, while all other selected cycles are displayed in green.
 - Cycles can be deselected (or selected) by clicking on the check box to the left of the cycle number in the **Cycles Selected** list to the left of the graph. The UP and DOWN arrows on the computer keyboard can be used to move quickly through the individual cycles.
 - The specific parameters shown in the graph are chosen from the **Display** configuration dialog.

The PV Loops Graph.

2) Click the arrow to the lower left of the XY graph window to open a menu with options for the displayed XY graph.

	Copy Graph
	View PVLoops
	View PRSW
	View Max dp vs EDV
	View PVA vs EDV
	View PVA vs ESP
	View E(t) vs Time
	View Markers
	Export E(t) vs Time data
	Export Avg. Loop data
	Export PVLoop data
	Set X axis Scale
	Set Y axis Scale
	AutoScale X axis
	AutoScale Y axis
-	

XY graph window menu.

- 3) Click **Copy Graph** to copy the current XY graph to the clipboard. It can then be pasted into the **Journal** or an external application.
- Click View PV Loops to display the PV Loops Graph of the checked cycles in the Cycles Selected list to the left of the XY graph window.

A number of PV Loop relationships can be graphed from the items in this menu:

- 5) Click View PRSW to display the preload recruitable stroke work (PRSW) line, as defined in the Settings. By default, PRSW, a measure of contractility, is calculated by plotting stroke work (SW) on the Y-axis and end diastolic volume (EDV) on the X-axis. Maximum volume (Vmax) can be used as an alternative to EDV if desired.
- Click View Max dP vs. EDV to display the XY graph of maximum dP/dt (Max dP) vs. enddiastolic volume (EDV).
- Click View PVA vs. EDV to display the XY graph of the pressure-volume area (PVA) vs. enddiastolic volume (EDV).
- Click View PVA vs. ESP to display the XY graph of the pressure-volume area (PVA) vs. endsystolic pressure (ESP).
- 9) Click View E(t) vs. Time to display time-varying elastance (E(t)) vs. Time.

Several display options are also available:

- 10) Click **Export Avg. Loop data** to export the data from the graphed average loop as a tab (*.txt) or comma (*.csv) separated text file.
- 11) Click **Export PV Loop data** to export the data from all the graphed loops as a tab (*.txt) or comma (*.csv) separated text file.
- 12) Click View Markers to display a graph of time (X-axis) vs. pressure and volume (Y-axis) with markers positioned at end-diastole (ED), maximum dP/dt (Max dP), end-diastole (ES), and minimum dP/dt (Min dP). The specific cycle displayed is determined by the position of the left cursor in the data recording at the top of the dialog.
- 13) Click **Export E(t) vs. Time data** to export the time-varying elastance (**E(t)**) vs. **Time** data as a tab (*.txt) or comma (*.csv) separated text file.
- 14) Click Set X-axis Scale or Set Y-axis scale to set the X-axis and Y-axis scales manually.
- Click AutoScale X-axis or AutoScale Y-axis to optimize the display scale of the X-axis or Y-axis of the current XY graph.

To Configure the **Display**:

- 1) Click on the **Display** tab to open the **PV Loops Display** configuration dialog.
- In the top panel of the **Display** dialog, choose the parameters you would like displayed on the **PV** Loops Graph. Observe the **PV** Loops Graph to see the addition or subtraction of the parameters as they are clicked and unclicked.
- 3) In the bottom panel of the **Display** dialog, choose the color that you would like each listed parameter to appear in the **PV Loops Graph**.

cincin inclu	Settings Results Display		
Show o	n PVLoop Graph		
Av	/erage Loop		
	Туре	Color	
1	Туре Selected Loop	Color	
1 2	Type Selected Loop PV Loops	Color	-[
1 2 3	Type Selected Loop PV Loops PVR lines	Color	-[
1 2 3 4	Type Selected Loop PV Loops PVR lines ED,ES,Tau Points	Color	-(
1 2 3 4 5	Type Selected Loop PV Loops PVR lines ED,ES,Tau Points Ees vs Ea	Color	
1 2 3 4 5 6	Type Selected Loop PV Loops PVR lines ED,ES,Tau Points Ees vs Ea Average Loop	Color	-(

PV Loops Display configuration dialog.

To Configure the Results:

 Returning to the tabs across the top of the configuration dialogs, click on the **Results** tab to open the **PV Loops Results** configuration dialog. Here the mathematical equations defining the end systolic pressure-volume relationship (**ESPVR**), the end diastolic pressure-volume relationship (**EDPVR**), the preload recruitable stroke work (**PRSW**), maximum dPdT (**Max dP**) vs. end diastolic volume (**EDV**), pressure-volume area (**PVA**) vs. **EDV**, and **PVA** vs. end systolic volume (**ESP**) and the time-varying elastance (**Emax or E(t)**) are displayed, based on the data from the currently displayed **PV Loops Graph**. Additional text can be entered into this dialog.

Channels	Settings	Results	Display		
Selection S	tart: 2007	-08-14 (0:00:03.	252	-
Selection D	ouration: 3	.07 s	ec		Π
Selection S	top: 2007-	-08-14 0	0:00:06.	322	
ESPVR:	_				
Equation:	P	= 0.1021	.11*V + -	44.979739	
R Value	= 0	.857			
SSE = 7	764.702				
Intercep	ot(V0) = 4	40.499			
ESPVR	.slope= 0	. 102			
EDPVR:					
Equation	n: P	= 0.0954	Ю7ехр (0.	.002448*V)	
Stiffness	s = 0	.002			
R Value	= 0	.963			
PRSW (mm	iHg):				
Equation	п: у	= 39.110	x + -274	31.171	
R Value	= 0	.884			
Intercep	ot = 7	01.381	Slope =	39.110	
Max dP vs	EDV:				
Equation	n: y	r = 6.057x	(+-2035	.351	
R Value	= 0	.693			4
Intercep	ot= 3	36.012	Slope =	6.057	
PVA vs ED	۷:				
Equation	n: y	r = 0.010x	+ -9.179	9	
R Value	= 0	.981			
Intercep	ot= 8	74.549	Slope =	0.010	η.

PV Loops Results configuration dialog.

Save or Load Occlusion Data

Use the **Save Occlusion Data** and **Load Occlusion Data** buttons to save the data from the section of the trace where occlusion occurs or to load a previously saved occlusion. This allows the user to perform an occlusion and make direct comparisons to an occlusion under different conditions or from another subject. These options are accessed from the **PV Loops Settings** configuration dialog.

Channels Settings Results Display
Use ECG for detecting ED
ESPVR Fit type Linear
EDPVR Fit type Exponential
ES Algorithm: Max PV Ratio Offset Calculated ES point by 0
Offset Calculated ED point by 0
Calculate PRSW using: EDV
Tau: Fit upto 5 mmHg above EDP
Cycle Detection Threshold Sensitivity 4
Ventricular Wall Volume 0
Load Occlusion Data Save Occlusion Data
Get V0 from: Current Data 🔻

The PV Loops Settings configuration dialog.

- 1) To save occlusion data, choose **Save Occlusion Data** to open a dialog where you can specify the computer location to save the occlusion data as an iWorx occlusion data file (*.iwxocc).
- 2) To load previously saved occlusion data, choose **Load Occlusion Data** to open a dialog where you can choose a previously saved occlusion data settings file.
- 3) Once a previously saved occlusion data file is loaded, the tabbed PV Loops Display configuration dialog will add parameters from the loaded occlusion file that can be added to the current PV Loops Graph. From the Display dialog, choose the specific parameters to be displayed from the checklist, and select the display color of these parameters. An example is shown below.
- Choose to Get V0 (the zero-pressure end systolic volume) from from the Current Data or a previously saved occlusion data file.

Offline PV Loop Calculations dialog with an occlusion comparison.

To Use the Data Table:

*	Sel	Time	HR	ESP	EDP	Pmax	Pmin	dPmax	dPmin	Vmax	Vmin	ESV	EDV	SV	СО	EF	SW	maxPwr	plPwr	EA
units		sec	bpm	mmHg	mmHg	mmHg	mmHg	mmHg/sec	mmHg/sec	uL	uL	uL	uL	uL	ul/min	%	mJoules	mWatt	mWatt/(uL*uL)	mmHg/uL
1	Yes	2.086	441.176	70.169	2.975	73.467	1.535	5806.989	-5881.777	31.337	19.153	19.673	30.230	10.556	4657.279	34.921	0.108	42.612	0.047	6.647
2	Yes	2.218	454.545	65.860	3.177	70.815	1.252	5521.278	-5802.478	29.510	19.552	20.256	28.663	8.407	3602.915	29.330	0.085	39.379	0.048	7.834
3	Yes	2.349	458.015	62.710	2.464	68.553	1.225	5293.833	-5401.578	29.234	17.767	18.753	28.913	10.160	5347.105	35.138	0.095	35.486	0.042	6.173
4	Yes	2.481	454.545	59.196	1.831	66.183	1.050	5035.133	-5219.100	28.718	17.802	18.494	27.942	9.448	4137.767	33.813	0.086	32.081	0.041	6.266
5	Yes	2.614	451.128	56.275	1.885	65.053	0.983	4946.811	-5139.844	27.066	17.017	18.156	26.945	8.789	3935.239	32.617	0.075	31.205	0.043	6.403
6	Yes	2.746	454.545	57.487	2.221	63.356	0.754	4709.045	-4879.511	26.639	17.443	18.184	26.197	8.013	3785.811	30.589	0.070	28.000	0.041	7.174
7	Yes	2.879	451.128	54.228	2.101	62.333	0.835	4622.289	-4816.667	27.105	17.174	18.106	26.384	8.278	3678.934	31.374	0.073	26.739	0.038	6.551
8	Yes	3.011	454.545	54.282	1.992	61.350	0.647	4432.289	-4562.433	26.667	16.542	17.251	26.455	9.204	4090.755	34.792	0.074	25.433	0.036	5.898
9	Yes	3.142	458.015	53.071	1.548	59.829	0.727	4252.755	-4421.811	26.590	17.065	17.962	26.332	8.370	3862.892	31.785	0.069	23.352	0.034	6.341
10	Yes	3.274	454.545	50.620	1.966	58.806	0.619	4139.034	-4379.900	26.206	17.109	17.939	26.039	8.100	3600.045	31.107	0.062	22.179	0.033	6.249
11																				
12	#		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
13	Mean		453.219	58.390	2.216	64.975	0.963	4875.946	-5050.510	27.907	17.662	18.478	27.410	8.932	4069.874	32.547	0.080	30.647	0.040	6.554
14	SD		4.567	5.848	0.489	4.558	0.287	520.454	508.255	1.608	0.919	0.840	1.370	0.840	521.027	1.929	0.013	6.477	0.005	0.534
15	Max		458.015	70.169	3.177	73.467	1.535	5806.989	-4379.900	31.337	19.552	20.256	30.230	10.556	5347.105	35.138	0.108	42.612	0.048	7.834
17	Min		441.176	50.620	1.548	58.806	0.619	4139.034	-5881.777	26.206	16.542	17.251	26.039	8.013	3600.045	29.330	0.062	22.179	0.033	5.898
	1																			
														_						

PV Loops Data Table.

- 1) Familiarize yourself with the **Data Table**.
 - The **Data Table** spans the lower part of the **PV Loops Calculations** dialog and displays the calculated values for each of the cycles checked in the **Cycles Selected** list.
 - The top line indicates the units for each of the chosen parameters.
 - The bottom few rows show the sample size, the mean, the standard deviation, minimum and maximum values, and the range of each of the chosen parameters averaged over all the selected cycles.
- Click the asterisk at the upper left of the Data Table to display two options: Autosize and Copy Selection. Autosize will optimize the size of the Data Table boxes, and Copy Selection copies any selected Data Table cells to the clipboard.

There are six buttons beneath the **Data Table**: Copy, Export, Algorithms, Table Options, Load Template, and Save Template.

- 3) Click **Copy** to copy all the calculated data in the **Data Table** to the clipboard.
- 4) Click the **Export** button to export the data as a tab (*.txt) or comma (*.csv) separated text file. The currently displayed XY graph can be exported as a Portable Network Graphics (*.png) or JPEG (*.jpg) image.
- 5) Click **Algorithms** to display the mathematical definitions of the parameters included in the **Data Table**.
- Click Table Options to open the Offline Calculations Options Dialog, which lists the functions from which the Data Table parameters can be chosen. All functions are described in the PV Loops Analysis: Reference section.

Offline Calculations Options Dialog
Parameters to Display
Time(sec) Heart Rate (HR) End Systolic Pressure (ESP) End Diastolic Pressure (EDP) Max Pressure (Pmax) Min Pressure (Pmin) Max dP/dt (dPmax) Min dP/dt (dPmax) Min dP/dt (dPmin) Max Volume (Vmin) End Systolic Volume (ESV) End Diastolic Volume (EDV) Stroke Volume (SV) Cardiac Output (CO) Ejection Fraction (EF) Stroke Work (SW) Max Power (maxPwr) Preload Adjusted Max Power (plPwr) Arterial Elastance (EA) Pressure Volume Area (PVA) Potential Energy (PE) Efficiency (Eff) Tau Weiss Tau Logistic Tau Glantz Tau Mirsky
Display Time from Selection Start 🔻
OK Cancel

Complete list of Data Table parameters.

- 7) Click **Load Template** or **Save Template** to display a dialog allowing you to name and save a specific configuration for future use or to load a previously saved template.
- 8) Click **OK** to close the analysis.

Volume Calibration

Most sensors will need calibration of some type for ventricular volume measurements. While uncalibrated volumes or even raw conductance measurements will show contractility changes relatively well, calibration is necessary to obtain absolute volumes. For a more complete theoretical background, see the **PV Loops Analysis: Reference** section.

LabScribe offers a variety of algorithms for volume calibration, all accessed from the **PV Loop** submenu of the **add function** menu for the **Main Window** channel with the raw data.

Periodic	+
Integral	+
Derivative	
Spirometry	+
MultiPoint Calibration	
Channel Math	
Filter	•
Smoothing	
AutoCorrelation	
Power	
Cardiac	•
EEG	•
Gain Telegraph	
DigitalInput	+
CrossTimeChannelCalculation	
TemplateMatch	
PVLoop	•
TimeShift Channel	
Event Marker	•
Sonomicrometry	•
PV Loop Toolbar	•

PV Loop Calibration options.

Conductance Volume

LabScribe offers two means of performing volume calibration based on the change in conductance due to the injection of a saline bolus. To use the **Parallel Volume** function to determine the parallel volume, it is necessary to use a calibrated total volume channel (one which includes the parallel volume). To use the **Vol.-Baan's Equation** function, it is possible to use a raw conductance channel. The resulting function channels will be volume calibrated and corrected for parallel conductance.

To use the Parallel Volume function:

PVLoop Volume S	Simple Calibration 🛛 🔜
Alpha	þ
Parallel Volume	0
Calculate Parallel	Volume from Channel Data
	OK Cancel

PV Loop Volume Simple Calibration dialog.

- 1) Click on add function on the Main Window volume channel.
- 2) In the dialog that opens, select **PV Loops**, and then **Parallel Volume** from the submenu.

- Enter the Alpha slope correction value, and click on Calculate Parallel Volume from Channel Data, opening the PV Loop Volume Calibration dialog.
- 4) In the **PV Loop Volume Calibration** dialog, choose the **Pressure** and calibrated **Volume** channel.
- 5) Using the cursors in the **Pressure** and **Volume** trace window at the top of the dialog, select the region corresponding to the saline bolus injection.

PV Loops Volume Calibration dialog: Parallel Volume from calibrated total volume channel.

- 6) In the end diastolic volume (EDV) vs. end systolic volume (ESV) XY graph, the line created by the shifting conductance values caused by the saline bolus will cross the identity line at the parallel volume. The equation of the data line, its goodness of fit, and the parallel volume are displayed below the XY graph window. Click OK.
- 7) The parallel volume will now be displayed in the **PV Loop Volume Simple Calibration** dialog. Click **OK** and a calibrated volume channel is added to the recording.

Baan's Equation: To use the Baan's Equation function:

- 1) Click on add function on a conductance (Volume) channel.
- 2) In the dialog that opens, select **PV Loops**, and then **Vol.-Baan's Equation** from the submenu, opening the **Baan's Equation** version of the **PV Loop Volume Simple Calibration** dialog.
- 3) Enter the **Alpha** slope correction factor, the resistivity of the blood (**Rho**), and the inter-electrode distance (**Length**).

PVLoop Volume Simple Calibration							
$V = 1/\alpha \ (\rho L^2)(G-G_p)$							
ρ = resistivity of solution (Rho) L = distance between sensing electrodes G = measured conductance Gp = parallel conductance α = SV correction factor (Alpha)							
Alpha	1						
Rho	1	Chm-cm V					
Length	4	i mm					
Parallel Conductance	0	i uMho ▼					
Calculate Parallel Conductance from Channel Data							
OK Cancel							

PV Loop Simple Volume Calibration dialog: Baan's Equation.

4) Click on Calculate Parallel Conductance from Channel Data, opening the PV Loop Volume Calibration Dialog.

PVLc	oop Volume Calibration	Dialog		
Â				mm
	Using the 2 c	urspors, select th	ne region corre	esponding to the injection of the saline bolus.
	Pressure Channel LVP	•		
Con	ductance Channel LV_V			
	EDV	ESV	^	
1	1496.342653	978.334908		
2	1420.339465	945.203622		
3	1379.157224	920.885248		
4	1347.218642	923.370109	E	
5	1333.005378	921.514706		
6	1338.173813	930.559574		
7	1323.960587	911.840390		Equation: Ges = 0.318586*Ged + 492.967956
8	1322.502688	906.870726		R Value = 0.919136
9	1320.051029	906.075565		Sum of Sourced Errors - 1052 219400
10	1312.828362	896.169314		Sum of Squared Errors = 1053,218499
11	1314.882556	913.463810	-	Parallel Conductance = 723.448682 G
				Export Cancel OK

PV Loops Volume Calibration dialog: Parallel Conductance for Baan's Equation.

5) Choose the **Pressure** and conductance (**Volume**) channel.

- 6) Using the cursors in the **Pressure** and **Volume** trace window at the top of the dialog, select the region corresponding to the saline bolus injection.
- 7) In the end diastolic volume (EDV) vs. end systolic volume (ESV) XY graph, the line created by the shifting conductance values caused by the saline bolus will cross the identity line at the parallel conductance. The equation of the data line, its goodness of fit, and the parallel conductance are displayed below the XY graph window. Click OK.
- 8) The parallel conductance will now be displayed in the **PVLoop Volume Simple Calibration** dialog. Click **OK** and a corrected volume channel is added to the recording.

Admittance Volume

Admittance sensors do not require the calculation of parallel volume or conductance. If you are using the *ADVantage* system, you will have entered the appropriate constants into the *ADVantage* interface, or used the *ADVantage* default values, and the calibrated volume, based on Wei's Equation, will be shown as a raw data channel in *LabScribe*. It may be necessary to recalculate this calibrated volume based on updated information that may cause a change in the constants. The **PV Loops Advanced Analysis Module** can compute the calibrated volume based on these updated constants and display the revised volume as a computed channel.

To calibrate ventricular volume based on revised constants:

1) To add a channel showing the ventricular volume based on new constants, from the **PV Loops** submenu, choose **Admittance Volume**, displaying the **Admittance Volume** Calculation dialog.

Admittance Volume	Calculation Dialog	
Settings Catheter	Calibration	
Pressure (mmHg)	LVP 🔻	
Magnitude (uS)	Magnitude Y 👻	
Phase (deg)	Phase 👻	
Species	Rodent 🔹	
Sigma/Epsilon	120	K units
Blood Resistivity	2	ohm.m
Gb-ED	2345	uS
Gb-ES	1635	uS
Segment Length	4.5	mm
Stroke Volume	25	uL
L		
		OK Cancel

PV Loops Admittance Volume Calculation dialog.

- 2) In the dialog, enter the Pressure, Magnitude, and Phase channels, the appropriate species, and any revised constants: the Sigma/Epsilon ratio, the Blood Resistivity, the blood conductance (Gb) values at end-diastole (ED) and end-systole (ES), the Segment Length between the sensing electrodes, and the Stroke Volume. Click OK to add a calibrated volume channel based on the entered constants.
- It is also possible to calibrate the catheter as part of this procedure. In the PV Loops Admittance Volume Calculation dialog, click on the Catheter Calibration tab.
 - The correct Magnitude and Phase are calculated as the catheter is placed in each standard saline (as indicated by its Conductivity), and these are incorporated into the admittance volume calibration.

Ad	Imittance Volume Calculatio	on Dialog		×
S	Gettings Catheter Calibration			
	Conductivity (uS)	Magnitude (uS)	Phase (deg)	
Ш	1000	500	4	
	2000	1000	3	
Ш	4000	2000	2	
Ш	6000	3000	1	
Ш	8000	4000	0.5	
Ш	10000	5000	0.5	
				Ŧ
	•		+	
		0	K Can	cel

PV Loops Admittance Volume Calculation dialog: Catheter Calibration.

Muscle and Blood Conductance Calibration

Muscle and blood conductance can also be calibrated and determined based on revised constants. To calibrate muscle and/or blood conductance:

- 1) Click on add function on a Main Window volume channel.
- 2) From the **PV Loops** submenu, choose **Muscle** or **Blood Conductance**, displaying the **Admittance Volume Calculation** dialog for **Muscle** or **Blood Conductance**.

4	Admittance Volum	ne Calculation Dialog	X
Γ	Settings Cathete	er Calibration	
	Magnitude (uS)	Magnitude Y 🔻	
	Phase (deg)	Phase 👻	
	Species	Rodent -	
	Sigma/Epsilon	120 K units	
		OK Can	cel

Muscle or Blood Conductance dialog.

- 3) Choose the Magnitude and Phase channels and the appropriate species.
- 4) Enter a known or default **Sigma/Epsilon** value.
- 5) Click the Catheter Conductance tab and select corrected Magnitude and Phase values.
- Click OK. A Muscle or Blood Conductance channel will be added with calibrated muscle or blood conductance values.

Wall Stress

It is possible to use stress-volume loops (instead of pressure-volume loops) to evaluate certain cardiomyopathies. To compute a **Wall Stress** channel, it is necessary to know the ventricular chamber diameter and the wall thickness. These channels, plus the pressure channel, can be used to calculate a **Wall Stress** channel that can be used to create and analyze wall stress-volume loops.

To calculate Wall Stress:

1) Choose **Wall Stress** from the **PV Loops** submenu, accessed by clicking **add function** on the volume channel.

Wall Stress Dialog	×
Pressure	LVP 👻
Chamber Diameter	Comp Ch 2 🔹
Wall Thickness	Comp Ch 3 🔹
Cancel	ОК

PV Loops Wall Stress dialog.

2) In this dialog, choose the channels with the Pressure, Chamber Dlameter, and Wall Thickness variables, and click OK. A computed Wall Stress channel will be added. This channel can be used instead of a pressure channel to compute and analyze stress-volume relationships.

PV Loops Analysis: Reference

When **PV Loops** is chosen from the **Advanced** menu, a submenu opens, displaying two choices: **Online Calculations** and **Offline Calculations**.

Online Calculations:

LabScribe displays ventricular pressure and ventricular volume data in real time as individual waveforms as well as on a **PV Loops** XY graph. Beat-to-beat summary data from left ventricular pressure (**LVP**) and left ventricular volume (**LVV**) signals are displayed in real time and can be saved, during acquisition, to the online **Journal**. The summary data contained in the **Journal** can be saved, copied into a spreadsheet, or exported to an external application for further analysis.

While recording data, it is possible to measure certain beat-by-beat parameters using **Online Calculations**. Choosing **Online Calculations** from the **PV Loops** submenu displays the **PV Loop Toolbar** above the uppermost channel.

PVLoop:	#	Tir	ne H	IR	ESP	EDP	Pmax	Pmin	dPmax	dPmin	Vmax	Vmin	ESV	EDV	SV	СО	EF	SW	maxPwr	plPwr	EA
•	<mark>٥.0</mark> م	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
The Onlin	e Pl	Lo	ops 1	Тоо	lbar.																

Online PV Loop calculations include:

- Sequential beat number (#): The sequential number of the particular cycle in the selection.
- Heart rate (HR): The heart rate during the cycle.
- End systolic pressure (ESP): The ventricular pressure at the end of systole.
- End diastolic pressure (EDP): The ventricular pressure at the end of diastole.
- Maximum pressure (Pmax): The maximum pressure generated during the cycle.
- Minimum pressure (Pmin): The minimum pressure generated during the cycle.
- Maximum dP/dt (dPmax): The maximum dP/dt during the cycle.
- Minimum dP/dt (dPmin): The minimum dP/dt during the cycle.
- Maximum volume (Vmax): The maximum ventricular volume during the cycle.
- Minimum volume (Vmin): The minimum ventricular volume during the cycle.
- End systolic volume (ESV): The ventricular volume at the end of systole.
- End diastolic volume (EDV): The ventricular volume at the end of diastole.
- Stroke volume (SV): The stroke volume based on the parameters of the cycle.
- Cardiac output (CO): The cardiac output based on the parameters of the cycle.
- Ejection fraction (EF): The ejection fraction based on the parameters of the cycle.
- Stroke work (SW): The stroke work based on the parameters of the cycle.
- Maximum Power (**maxPwr**): For each point in the cycle, power is calculated current value of the pressure multiplied by the current value of the smoothed derivative. **MaxPwr** is the maximum of the power averaged over the selected cycles.
- Preload Adjusted Max Power (pIPwr): maxPwr/(EDV * EDV).
- Arterial Elastance (EA): ESP / SV.

Clicking on the down arrow on the left side of the PV Loop Toolbar will display a menu with three choices:

- Setup: Opens the Online Calculation Setup dialog.
- AutoSize: Adjusts the size of the PV Loop Toolbar title and data boxes.
- Set Font Size: Changes the size of the font in the PV Loop Toolbar data boxes.

The criteria for setting up the **PV Loops** online calculations are entered into the **Online Calculation Setup** dialog.

Online Calculation Setup	X
	Calculations
	Beat #(#)
Volume Channel LV_V 👻	Time(sec)
Average	Heart Rate (HR)
····	End Systolic Pressure (ESP)
Cycles 👻 2 📮	End Diastolic Pressure (EDP)
	Max Pressure (Pmax)
	Min Pressure (Pmin)
	Max dP/dt (dPmax)
	MIn dP/dt (dPmin)
	Max Volume (Vmax)
	Min Volume (Vmin)
	End Systolic Volume (ESV)
Export to Journal Set the thresholds for detecting a cycle using the two horizon O Use percentage of Max and Min Scaling	Browse atal cursors.
Use absolute values	
	OK Cancel

The Online Calculation Setup dialog.

In this dialog, the **Pressure** and the **Volume** channels, the calculations to be performed online, and whether these calculations should be exported to the **Journal**, are specified.

The **Volume** channel may be a recording from a conductance catheter, or a recording in which ventricular volume has been determined in some other way, for example, from **Sonomicrometry** measurements.

When the **Pressure** channel is selected, its graph will appear at the bottom of the dialog. The two horizontal threshold lines should be placed so that they are between each cycle's maximum and minimum. *LabScribe* uses the positive threshold crossing from below the lower threshold to above the upper threshold to determine the cycle.

In order to compensate for variation from cycle to cycle, it is possible for *LabScribe* to average a userselected number of sequential cycles. This number should be entered in the **Cycles to Average** text box. Alternatively, data can be averaged over a specified **Time**.

Once the dialog is completed, and **OK** is clicked, the dialog will close and the selected calculations will be displayed in the data boxes of the **PV Loops** toolbar as data are recorded.

It is possible to generate a pressure-volume graph in real time by clicking on the **XY Graph** icon in the **Toolbar** and specifying the pressure and volume channels. The position in the loop of the left and right cursors are indicated by moving markers in the graph.

The online PV Loops dialog, with XY Graph activated.

Offline Calculations

Offline, using previously recorded pressure and volume channels, *LabScribe* can calculate virtually every PV Loop derived parameter of cardiac function. XY graphs displaying relationships among the parameters can also be displayed. All calculations can be exported or copied to Excel or other spreadsheets for further analysis. The graphs can all be copied as images to include in presentations or manuscripts.

The Offline PV Loop Calculations Dialog: Choosing Offline Calculations from the PV Loops submenu opens the offline PV Loop Calculations dialog. The panels of this dialog can be resized by moving the mouse cursor over the boundaries until a double-headed arrow appears, and dragging the boundaries to resize the panels.

The sections of the offline PV Loops Calculations dialog, each of which is described in more detail below:

- The raw pressure and volume channels are displayed across the top of the dialog in the channel display area.
- Tabbed configuration dialogs are on the left of the center part of the dialog.
- The XY graph window, in which the **PV Loops Graph** and pressure-volume relationships can be graphed, is on the right.
- Between the configuration dialogs and the graph area is the **Cycles Selected** list, in which the graphed cycles can be selected by checking the boxes to the left of each cycle number.
- The Data Table with each cycle's parameters extends across the lower part of the dialog.

F	VLoop C	alculati	ions : m	ouse2c-c	occlusion	L									X	
	\sim						ng the 2 c		elect a region	to analyse						
	Chann Selectii Selectii ESPVR: Equat 50.2060 R Va SSE = Inter ESP EDPVR Equa	els Se on Start on Dura on Stop ion: 037 lue = = 9.5 ccept(VC PVR slo : ation:	ettings t: 2007-(ation: b: 2007-(76 0) = pe=	Results 08-14 0(2.005 08-14 0(P = -2.12 -0.979 -23.633 -2.124 P = 418.7	Display):00:00.20 sec):00:02.20 4411*V + 65171exp		Cycles Selected 2 2 3 4 5 6 7 7 8 9 9 10 11 11 12 12 12 12 13 14 15 16 16 16 16 16 16 16 16 16 16	E	70- 60- 60- 60- 40- 40- 40- 10- 10- 0-	-50		-40 LV_V (0	ul)	-30		
	*	Sel	Time	HR	ESP	EDP	Pmax	Pmin	dPmax	dPmin	Vmax	Vmin	ESV	EDV	S٧	*
	units		sec	bpm	mmHg	mmHg	mmHg	mmHg	mmHg/sec	mmHg/sec	uL	uL	uL	uL	uL	=
	1	Yes	0.288	441.176	51.950	0.975	66.000	0.097	4005.318	-3956.423	-35.520	-50.913	-48.304	-38.047	10.2	
	2	Yes	0.425	437.956	49.754	1.268	64.000	0.144	3880.683	-3739.751	-35.091	-50.162	-47.582	-37.452	10.13	
	3	Yes	0.560	444.444	50.097	0.731	62.097	0.097	3685.582	-3566.461	-34.760	-49.492	-46.627	-37.370	9.25	
	4	Yes	0.697	437.956	47.707	0.487	60.486	-0.050	3506.541	-3447.100	-34.497	-48.906	-46.086	-37.294	8.79:	
	5	Yes	0.834	437.956	47.364	1.219	59.023	-0.099	3447.339	-3371.360	-34.279	-48.425	-45.514	-36.813	8.70:	÷
ľ	< Col	ру		Export	A	lgorithms	Ta	ible Optic	ons	l Template	Save T	emplate		Ok	•]

The offline PV Loop Calculations dialog.

The Channel Display Area: In the channel display area, the two vertical blue lines can be adjusted to designate a section of the recording for analysis.

The Configuration Dialogs

There are four tabbed dialogs used to configure the analysis: Channels, Settings, Results, and Display.

The Channels Configuration Dialog

Channels	Settings	Results	Display	
Pressure (Channel (LVP	•	mmHg 🔻
Volume (Channel (LV_V	•	uL 🔻
ECG (Channel (None	•	

PV Loops Channels configuration dialog.

- The **Pressure Channel** and the **Volume Channel**, as well as the appropriate units, are chosen from the first two menus. Optionally, an **ECG** channel can also be chosen.
- The region of interest is defined by adjusting the two cursors in the channel display area at the top of the **PV Loop Calculations** dialog.

 Once the Pressure and Volume channels are designated, the PV Loops Graph will be displayed in the XY graph area for all the cycles in the selection between the cursors. The highlighted cycle in the Cycles Selected window is shown in red, while all other selected cycles are displayed in green. This makes it easy to identify individual cycles for inclusion or exclusion from the analysis. Cycles can be deselected (or selected) by clicking on the check box to the left of the cycle number. The UP and DOWN arrows on the computer keyboard can be used to move quickly through the individual cycles.

The Settings Configuration Dialog

Channels Settings Results Display
Use ECG for detecting ED
ESPVR Fit type Linear
EDPVR Fit type Exponential
ES Algorithm: Max PV Ratio Offset Calculated ES point by 0
Offset Calculated ED point by 0
Calculate PRSW using: EDV 🔻
Tau: Fit upto 5 mmHg above EDP
Cycle Detection Threshold Sensitivity 4
Ventricular Wall Volume 0
Load Occlusion Data Save Occlusion Data
Get V0 from: Current Data 🔻

PV Loops Settings dialog.

- Optionally, an ECG recording may be used for the detection of end-diastole (ED).
- A linear fit is the default choice for the end-systolic pressure-volume relationship (ESPVR) data, although an Exponential fit is an alternate choice.
- An Exponential or Exponential with Constant fit can be chosen from the EDPVR Fit Type menu.
- Max PV Ratio will be used to compute end-systole (ES) in each cycle, and is the default value. Max P, Min dP, and Max dP are alternate choices.
- The **Offset Calculated ES point by** menu indicates how far to offset **ES** from the calculated value. This can be changed as desired.
- The **Offset Calculated ED point by** menu indicates how far to offset **ED** from the calculated value. This value can be changed as desired.
- EDV or Vmax can be chosen to calculate the preload recruitable stroke work, PRSW.
- The number of mmHg above end diastolic pressure (EDP) that should be designated as the uppermost point that should be used to create the best fit line from which Tau (the time constant of blood pressure decrease during diastole) is computed should be entered in the Tau fit box.

- The number of cycles that should be used to determine the **Cycle Detection Threshold Sensitivity** can be indicated. By default, a threshold sensitivity of 4 is used to detect cycles. If each cycle is not being detected properly, the sensitivity can be adjusted.
- The Ventricular Wall Volume can be compensated for by entering a value in the text box.
- The Save Occlusion Data and Load Occlusion Data buttons save the data from the section of the trace where occlusion occurs or load a previously saved occlusion. This allows the user to perform an occlusion and make direct comparisons to an occlusion under different conditions or from another subject. These options are accessed from the PV Loops Settings configuration dialog.
 - Choosing **Save Occlusion Data** opens a dialog where the user can specify the computer location to save the occlusion data as an iWorx occlusion data file (*.iwxocc).
 - Choosing Load Occlusion Data opens a dialog where the user can choose a previously saved occlusion data settings file.
 - Once a previously saved occlusion data file is loaded, the tabbed **Display** configuration dialog will add items from the loaded occlusion file that can be added to the current **PV Loops Graph**.
 From the **Display** dialog, the specific parameters to be displayed are chosen from the checklist, and the display color of these parameters is chosen. An example is shown below.

Offline PV Loop Calculations dialog with an occlusion comparison.

• The user can choose to **Get V0** (the zero-pressure end systolic volume) **from** from the **Current Data** or a previously saved occlusion data file.

The Results Configuration Dialog

Channels Settings	Results	Display	
Selection Start: 2007-	08-14 0	0:00:03.	252
Selection Duration: 3.	.07 se	ec	
Selection Stop: 2007-	08-14 00	0:00:06.	322
ESPVR:	_		
Equation: P	= 0.1021	11*V + -	44.979739
R Value = 0.	857		
SSE = 764.702			
Intercept(V0) = 44	10.499		
ESPVR slope= 0.	102		
EDPVR:	- 0.0054	07(0	00244980
Equation: P	= 0.0954	uvexp(u.	002446*V)
D Value = 0.	002		
PDSW (mmHa):	505		
Fountion: v	= 39 110	v ± -274	31 171
R Value = 0.	884	~ 1 2/1	51.1/1
Intercent = 70	01.381 9	Slope =	39,110
Max dP vs EDV:		nope.	
Equation: y	= 6.057x	+ -2035	.351
R Value = 0.	693		
Intercept = 33	36.012 5	Slope =	6.057
PVA vs EDV:			
Equation: y	= 0.010x	+ -9.179	9
R Value = 0.	981		
Intercept = 87	74.549 9	Slope =	0.010

PV Loops Results configuration dialog.

• The mathematical equations defining ESPVR, EDPVR, PRSW, Max dP vs. EDV, PVA vs. EDV, and PVA vs. ESP and Emax (E(t)) are displayed, based on the data from the currently displayed PV Loops Graph.

Ξ

• Additional text can be entered into this dialog.

The Display Configuration Dialog

Channels	Settings	Results	Display			
-Show o	n PVLoop G	raph				
▼ PV ▼ ES ▼ ED ▼ ES ▼ ED ■ Ee ■ Ta ■ Ta ■ Av	Loops location PVR PVR s vs Ea u start u stop verage Loop)				
		т	уре		Color	
1	Selected	Loop				
2	PV Loops					
3	PVR lines					
4	ED,ES,Ta	u Points				
5	Ees vs Ea	3				
6	Average	Loop				

PV Loops Display configuration dialog.

- The specific parameters shown in the graph are chosen from the top part of the **Display** configuration dialog.
- The colors of those parameters in the **PV Loops Graph** are chosen in the lower part of the **Display** configuration dialog.

The XY Graph Window

'The arrow to the lower left of the XY graph window can be clicked to open a menu with options for the displayed XY graph.

Copy Graph
View PVLoops
View PRSW
View Max dp vs EDV
View PVA vs EDV
View PVA vs ESP
View E(t) vs Time
View Markers
Export E(t) vs Time data
Export Avg. Loop data
Export PVLoop data
Set X axis Scale
Set Y axis Scale
AutoScale X axis
AutoScale Y axis

XY graph window menu.

- **Copy Graph**: Copies the current XY graph to the clipboard. It can then be pasted into the **Journal** or an external application.
- View PV Loops: Displays the PV Loops Graph of the checked cycles in the Cycles Selected list to the left of the XY graph window.
- View PRSW: Displays the preload recruitable stroke work (PRSW) line, as defined in the Settings. By default, PRSW is calculated by plotting SW on the Y-axis and EDV on the X-axis. Vmax can be used as an alternative to EDV if desired.
- View Max dp vs. EDV: Displays the XY graph of maximum dP/dt (Max dP) vs. end diastolic volume (EDV).
- View PVA vs. EDV: Displays the XY graph of the pressure-volume area (PVA) vs. end diastolic volume (EDV).
- View PVA vs. ESP: Displays the XY graph of the pressure-volume area (PVA) vs. end systolic pressure (ESP).
- View E(t) vs. Time: Displays time-varying elastance (E(t)) vs. Time.
- Export Avg. Loop data: Exports the data from the graphed average loop as a tab (*.txt) or comma (*.csv) separated text file.
- Export PV Loop data: Exports the data from the all the graphed loops as a tab (*.txt) or comma (*.csv) separated text file.

- View Markers: Displays a graph of time (X-axis) vs. pressure and volume (Y-axis) with markers positioned at ED, Max dP, ES, and Min dP. The specific cycle displayed is determined by the position of the left cursor in the data recording at the top of the dialog.
- Export E(t) vs. Time: Exports the E(t) vs. Time data as a tab (*.txt) or comma (*.csv) separated text file.
- Set X-axis Scale or Set Y-axis Scale: Allows the user to set the X-axis and Y-axis scales manually.
- AutoScale X-axis or AutoScale Y-axis: Optimizes the display scale of the X-axis or Y-axis of the current XY graph.

The PV Loops Graph

The **PV Loops Graph** will be displayed in the XY graph area for all the cycles in the selection and is illustrated below.

- By default, the highlighted cycle in the **Cycles Selected** window is shown in red, while all other selected cycles are displayed in green.
- Cycles can be deselected (or selected) by clicking on the check box to the left of the cycle number in the **Cycles Selected** list to the left of the graph. The UP and DOWN arrows on the computer keyboard can be used to move quickly through the individual cycles.
- The specific parameters shown in the graph are chosen from the **Display** configuration dialog.

The PV Loops Graph.

The Data Table

The Data Table displays the calculated values for each of the selected cycles.

*	Sel	Time	HR	ESP	EDP	Pmax	Pmin	dPmax	dPmin	Vmax	Vmin	ESV	EDV	SV	СО	EF	SW	maxPwr	plPwr	EA
units		sec	bpm	mmHg	mmHg	mmHg	mmHg	mmHg/sec	mmHg/sec	uL	uL	uL	uL	uL	ul/min	%	mJoules	mWatt	mWatt/(uL*uL)	mmHg/uL
1	Yes	2.086	441.176	70.169	2.975	73.467	1.535	5806.989	-5881.777	31.337	19.153	19.673	30.230	10.556	4657.279	34.921	0.108	42.612	0.047	6.647
2	Yes	2.218	454.545	65.860	3.177	70.815	1.252	5521.278	-5802.478	29.510	19.552	20.256	28.663	8.407	3602.915	29.330	0.085	39.379	0.048	7.834
3	Yes	2.349	458.015	62.710	2.464	68.553	1.225	5293.833	-5401.578	29.234	17.767	18.753	28.913	10.160	5347.105	35.138	0.095	35.486	0.042	6.173
4	Yes	2.481	454.545	59.196	1.831	66.183	1.050	5035.133	-5219.100	28.718	17.802	18.494	27.942	9.448	4137.767	33.813	0.086	32.081	0.041	6.266
5	Yes	2.614	451.128	56.275	1.885	65.053	0.983	4946.811	-5139.844	27.066	17.017	18.156	26.945	8.789	3935.239	32.617	0.075	31.205	0.043	6.403
6	Yes	2.746	454.545	57.487	2.221	63.356	0.754	4709.045	-4879.511	26.639	17.443	18.184	26.197	8.013	3785.811	30.589	0.070	28.000	0.041	7.174
7	Yes	2.879	451.128	54.228	2.101	62.333	0.835	4622.289	-4816.667	27.105	17.174	18.106	26.384	8.278	3678.934	31.374	0.073	26.739	0.038	6.551
8	Yes	3.011	454.545	54.282	1.992	61.350	0.647	4432.289	-4562.433	26.667	16.542	17.251	26.455	9.204	4090.755	34.792	0.074	25.433	0.036	5.898
9	Yes	3.142	458.015	53.071	1.548	59.829	0.727	4252.755	-4421.811	26.590	17.065	17.962	26.332	8.370	3862.892	31.785	0.069	23.352	0.034	6.341
10	Yes	3.274	454.545	50.620	1.966	58.806	0.619	4139.034	-4379.900	26.206	17.109	17.939	26.039	8.100	3600.045	31.107	0.062	22.179	0.033	6.249
11																				
12	#		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
13	Mean		453.219	58.390	2.216	64.975	0.963	4875.946	-5050.510	27.907	17.662	18.478	27.410	8.932	4069.874	32.547	0.080	30.647	0.040	6.554
14	SD		4.567	5.848	0.489	4.558	0.287	520.454	508.255	1.608	0.919	0.840	1.370	0.840	521.027	1.929	0.013	6.477	0.005	0.534
15	Max		458.015	70.169	3.177	73.467	1.535	5806.989	-4379.900	31.337	19.552	20.256	30.230	10.556	5347.105	35.138	0.108	42.612	0.048	7.834
17	Min		441.176	50.620	1.548	58.806	0.619	4139.034	-5881.777	26.206	16.542	17.251	26.039	8.013	3600.045	29.330	0.062	22.179	0.033	5.898
														_						
•																				

PV Loops Data Table.

The top line indicates the units for each of the chosen parameters.

The bottom few rows show the sample size, the mean, the standard deviation, minimum and maximum values, and the range of each of the chosen parameters averaged over all the selected cycles.

Clicking the asterisk at the upper left of the **Data Table** to display two options: **Autosize** and **Copy Selection**. **Autosize** will optimize the size of the **Data Table** boxes. **Copy Selection** copies any selected **Data Table** cells to the clipboard.

There are six buttons beneath the Data Table: Copy, Export, Algorithms, Table Options, Load Template, and Save Template.

- Copy: Copies all the calculated data in the Data Table to the clipboard.
- **Export:** Exports the data as a tab (*.txt) or comma (*.csv) separated text file. The currently displayed XY graph can be exported as a Portable Network Graphics (*.png) or JPEG (*.jpg) image.
- Clicking **Algorithms** displays the mathematical definitions of the parameters included in the **Data Table**.
- **Table Options:** Opens the **Offline Calculations Options** dialog, which lists the functions from which the **Data Table** parameters can be chosen.

Offline Calculations Options Dialog
Parameters to Display
Time(sec) Heart Rate (HR) End Systolic Pressure (ESP) End Diastolic Pressure (EDP) Max Pressure (Pmax) Min Pressure (Pmax) Min Pressure (Pmax) Min dP/dt (dPmax) Min dP/dt (dPmax) Min Volume (Vmax) Min Volume (Vmax) Min Volume (Vmin) End Systolic Volume (ESV) End Diastolic Volume (ESV) End Diastolic Volume (ESV) End Diastolic Volume (ESV) Stroke Volume (SV) Cardiac Output (CO) Ejection Fraction (EF) Stroke Work (SW) Max Power (maxPwr) Preload Adjusted Max Power (plPwr) Arterial Elastance (EA) Pressure Volume Area (PVA) Potential Energy (PE)
Tau Weiss Tau Logistic Tau Glantz
Tau Mirsky
Display Time from Selection Start -
OK Cancel

Complete list of Data Table parameters.

• Load Template or Save Template: Displays a dialog allowing you to name and save a specific configuration for future use or to load a previously saved template.

Offline Calculation Algorithms: The Offline PV Calculations displayed in the Data Table include:

- Heart rate (**HR**): 60/average cycle period.
- End-systolic pressure (ESP): Ventricular pressure at end-systole.
- End-diastolic pressure (EDP): Ventricular pressure at end-diastole.
- Maximum pressure (Pmax): Average maximum value of pressure channel over selected cycles.
- Minimum pressure (Pmin): Average minimum value of pressure channel over selected cycles.
- Maximum dP/dt (dPmax): Average maximum value of smoothed derivative over selected cycles.
- Minimum dP/dt (dPmin): Average minimum value of smoothed derivative over selected cycles.
- Maximum volume (Vmax): Average maximum value of volume channel over selected cycles.
- Minimum volume (Vmin): Average minimum value of volume channel over selected cycles.
- End systolic volume (ESV): Average value of volume channel at end-systole over selected cycles.
- End diastolic volume (**EDV**): Average value of volume channel at end-diastole over selected cycles.
- Stroke volume (SV): EDV ESV.
- Cardiac output (CO): SV * HR.
- Ejection fraction (EF): 100*(SV / EDV).
- Stroke work (SW): Area within the PV Loop averaged over selected cardiac cycles.

- Maximum power (maxPwr): For each point in the cycle, power is calculated current value of the
 pressure multiplied by the current value of the smoothed derivative. MaxPwr is the maximum of
 the power averaged over the selected cycles.
- Preload adjusted maximum power (pIPwr): maxPwr/(EDV * EDV).
- Arterial elastance (Ea): ESP / SV.
- Pressure-volume area (PVA): PE + SW.
- Potential energy (PE): (ESP * (ESV V0))/2 (EDP * (EDV V0))/4, where V0 is the zero-pressure end systolic volume.
- Efficiency (Eff): SW / PVA.
- Isovolumic relaxation time constant (Tau): Can be calculated a number of ways:
 - Weiss: P(t) = A(-t/Tau).
 - Logistic: P(t)= A(-t/Tau) + B.
 - Glantz: Regression of dP/dt vs. Pressure.
 - Mirsky: Time (in ms) required for left ventricular pressure to fall to 1/2 of its value at ESP.
- End systolic pressure-volume relationship (ESPVR):
 - Linear fit: Slope of line created by **ES** points of PV Loops during an occlusion.
 - Quadratic fit: sqrt(b2 4 * a * c) where **ESP** = (a * ESV * ESV) + (b * ESV + c).
- Time-varying elastance (E(t)): ED points for all the loops are aligned and the maximum slope is calculated.

Calibration of Volume Data

Most sensors will need calibration of some type for ventricular volume measurements. While uncalibrated volumes or even raw conductance measurements will show contractility changes relatively well, calibration is necessary to obtain absolute volumes.

LabScribe offers a variety of algorithms for volume calibration, all accessed from the **PV Loops** submenu of the **add function** menu for the channel with the raw data.

Periodic	•	
Integral	•	
Derivative		
Spirometry	•	
MultiPoint Calibration		
Channel Math		
Filter	•	
Smoothing		
AutoCorrelation		
Power		
Cardiac	•	
EEG	•	
Gain Telegraph		
DigitalInput	•	
CrossTimeChannelCalculation		
TemplateMatch		
PVLoop	Parallel Volume	
TimeShift Channel	VolBaan's Equation	
Event Marker	 Admittance Volume 	
Sonomicrometry	 Blood Conductance 	
PV Loop Toolbar	Muscle Conductance Wall Stress	

PV Loops Calibration options.

Conductance Volume

Conductance catheters output raw conductance measurements that need to be converted to volumes, and it is necessary to correct for the conductance contributions (parallel conductance) of surrounding heart structures. It is possible to get calibrated volumes from conductance measurements through the use of Baan's equation, which uses variables including the distance between the electrodes, the resistivity of blood, and the conductance measurements to calculate calibrated volumes. A slope factor **Alpha** is also necessary to adjust for the physical shape of a heart and the nature of the electric field itself.

In the most common method of adjusting for the parallel conductance, a bolus of hypertonic saline is injected into the blood before it reaches the ventricle and the change in conductance as it passes through the ventricle is measured and used to determine the parallel conductance (or volume), as the parallel conductance won't change while the blood conductance will change as a result of the saline passing through the ventricle.

LabScribe offers two means of performing volume calibration based on the injection of a saline bolus. To use the **Parallel Volume** function to determine the parallel volume, it is necessary to use a calibrated total volume channel (including the parallel volume). To use the **Vol.-Baan's Equation** function, it is possible to use a raw conductance channel. The resulting function channels will be volume calibrated and corrected for parallel conductance.

Selecting the **PV Loops** submenu from the **add functions** list opens a dialog in which **Parallel Volume** or **Vol.-Baan's Equation** can be chosen. To use the **Parallel Volume** function to determine the parallel volume, it is necessary to use a calibrated volume channel. To use the **Vol.-Baan's Equation** function, it is possible to use a raw conductance channel. The resulting function channels will be volume calibrated and corrected for parallel conductance.

Using the Parallel Volume function:

PVLoop Volume S	Simple Calibration
Alpha	þ
Parallel Volume	0
Calculate Parallel	Volume from Channel Data
	OK Cancel

PV Loop Volume Simple Calibration dialog.

- Clicking on add function on the volume channel displays a menu from which PV Loops, and then Parallel Volume, can be chosen. The PV Loop Volume SImple Calibration dialog will open.
- The Alpha slope correction value should be entered before clicking on Calculate Parallel Volume from Channel Data, which opens the PV Loop Volume Calibration dialog.

In the **PV Loop Volume Calibration Dialog**, the **Pressure** and calibrated **Volume** channel are chosen from the appropriate menus. The cursors in the **Pressure** and **Volume** trace window at the top of the dialog should be adjusted to select the region corresponding to the saline bolus injection.

PV Loops Volume Calibration dialog: Parallel Volume from calibrated total volume channel.

In the **EDV** vs. **ESV** XY graph, the line created by the shifting conductance values caused by the saline bolus will cross the identity line at the parallel volume. The equation of the data line, its goodness of fit, and the parallel volume are displayed below the XY graph window. Upon clicking **OK**, the parallel volume will now be displayed in the **PVLoop Volume Simple Calibration** dialog. Clicking **OK** in this dialog adds a corrected volume channel to the *LabScribe* **Main Window**.

Using the Baan's Equation function:

 Clicking on add function on a conductance (Volume) channel displays a menu from which PV Loops, and then Vol.-Baan's Equation should be chosen. The Baan's Equation version of the PVLoop Volume Simple Calibration dialog will open.

PVLoop Volume Simp	le Calibration	×					
V= 1/α (ρL	$V= 1/\alpha \ (\rho L^2)(G-G_p)$						
ρ = resistivity of solution (Rho) L = distance between sensing electrodes G = measured conductance Gp = parallel conductance α = SV correction factor (Alpha)							
Alpha	1						
Rho		n-cm ▼					
Length	4 🔺 mm						
Parallel Conductance	0 uMho	,					
Calculate Parallel Conductance from Channel Data							
	ОК С	ancel					

PVLoop Volume Simple Calibration dialog: Baan's Equation.

- In this dialog, the **Alpha** slope correction factor, the resistivity of the blood (**Rho**) and the interelectrode distance (**Length**) should be entered.
- Clicking on Calculate Parallel Conductance from Channel Data will display the PV Loop
 Volume Calibration dialog.

PV Loops Volume Calibration dialog: Parallel Conductance for Baan's Equation

The appropriate **Pressure** and conductance (**Volume**) channels should be entered. Using the cursors in the **Pressure** and **Volume** trace window at the top of the dialog, the region corresponding to the saline bolus injection should be selected.

In the **EDV** vs. **ESV** XY graph, the line created by the shifting conductance values caused by the saline bolus will cross the identity line at the parallel conductance. The equation of the data line, its goodness of fit, and the parallel conductance are displayed below the XY graph window.

Upon clicking **OK**, the parallel conductance will now be displayed in the **PVLoop Volume Simple Calibration** dialog. Clicking **OK** in this dialog adds a calibrated volume channel to the *LabScribe* **Main WIndow**.

Admittance Volume

Admittance sensors do not require the calculation of parallel volume or conductance. If the ADVantage system is being used, the user will have entered the appropriate constants into the ADVantage interface, or used the ADVantage default values, and the calibrated volume, based on Wei's Equation, will be shown as a raw data channel in *LabScribe*, along with **Magnitude** and **Phase** channels. It may be necessary to recalculate this calibrated volume based on updated information that may cause a change in the constants. The **PVLoops** functions can compute the calibrated volume based on these updated constants and display the volume as a computed channel.

Calibration of the ventricular volume based on revised constants:

Choosing **Admittance Volume**, from the **PV Loops** submenu of the **add function** menu associated with the raw volume channel, displays the **Admittance Volume Calculation** dialog.

Admittance Volume Calculation Dialog									
Settings Catheter	Settings Catheter Calibration								
Pressure (mmHg)	LVP 👻								
Magnitude (uS)	Magnitude Y 👻								
Phase (deg)	Phase 👻								
Species	Rodent 🔻								
Sigma/Epsilon	120	K units							
Blood Resistivity	2	ohm.m							
Gb-ED	2345	uS							
Gb-ES	1635	uS							
Segment Length	4.5] mm							
Stroke Volume	25	uL							
L									
	Į	OK Cancel							

PV Loops Admittance Volume Calculation dialog.

 In this dialog, the Pressure, Magnitude and Phase channels, the appropriate species, the Sigma/ Epsilon ratio, the Blood Resistivity, the GB values at ED and ES, the Segment Length between the sensing electrodes, and the Stroke Volume, should be entered in the appropriate data boxes. Clicking OK adds a calibrated volume channel based on the entered constants.

It is also possible to calibrate the catheter as part of this procedure. In the **PV Loops Admittance Volume Calculation** dialog, click on the **Catheter Calibration** tab.

• The correct **Magnitude** and **Phase** are calculated as the catheter is placed in each standard saline (as indicated by its **Conductivity**), and these are incorporated into the admittance volume calibration.

Muscle and Blood Conductance Calibration

Muscle and blood conductance can also be calibrated and determined based on revised constants. Calibration of muscle and/or blood conductance:

• From the PV Loops submenu of the add function menu of the volume channel, Muscle or Blood Conductance should be selected, displaying the Admittance Volume Calculation dialog for Muscle or Blood Conductance.

4	Admittance Volume Calculation Dialog							
	Settings Cathete	r Calibration						
	Magnitude (uS)	Magnitude Y	•					
	Phase (deg)	Phase	•					
	Species	Rodent	•					
	Sigma/Epsilon	120	×	K units				
	*			OK Cancel				

Muscle or Blood Conductance dialog.

- In this dialog, the Magnitude and Phase channels, the appropriate species, and a measured or default Sigma/Epsilon value should be entered.
- Clicking the **Catheter Conductance** tab and selecting the corrected **Magnitude** and **Phase** values, and then **OK**, will add a **Muscle** or **Blood Conductance** computed channel with the recalibrated muscle or blood conductance values.

Wall Stress

It is possible to use stress-volume loops (instead of pressure-volume loops) to evaluate certain cardiomyopathies. To compute a **Wall Stress** channel, it is necessary to know the ventricular chamber diameter and the wall thickness. The chamber diameter and the wall thickness can be calculated via ultrasound. The ultrasound system will calculate these values and output them as text values which can be imported into *LabScribe* as individual channels. These channels, plus the pressure channel, can be used to calculate a **Wall Stress** channel that can be used to create and analyze wall stress-volume loops.

To calculate Wall Stress:

 Choosing Wall Stress from the PV Loops submenu, accessed by clicking add function on the volume channel, opens the Wall Stress dialog.

Wall Stress Dialog		X
Pressure	LVP 🔻	
Chamber Diameter	Comp Ch 2 🔹	
Wall Thickness	Comp Ch 3 🔹	
Cancel	ОК	

PV Loops Wall Stress dialog.

• The **Pressure**, **Chamber Diameter**, and **Wall Thickness** channels are chosen from the three menus. Upon clicking **OK**, a computed **Wall Stress** channel will be added to the display. This channel can be used instead of a pressure channel to compute and analyze stress-volume relationships.